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Average State Observers for Large-Scale Network
Systems

Tomonori Sadamoto, Member, IEEE, Takayuki Ishizaki, Member, IEEE, and Jun-ichi Imura, Member, IEEE

Abstract—In this paper, we propose a novel observer, called
the average state observer, for large-scale network systems. This
observer estimates the average behavior of the system with an
estimation error assurance. To design an average state observer
with explicit consideration of the estimation error, we first derive
a tractable representation of the estimation error system. On the
basis of this representation, we provide a theoretical upper bound
of the estimation error for the average state observer. As a result,
a systematic procedure to design the average state observers with
an estimation error assurance is presented. Finally, we show the
efficiency of the average state observer through an example of
spatially discretized thermal diffusion networks.

Index Terms—Large-scale systems, Observer design, Model
reduction

I. INTRODUCTION

Dynamical systems evolving over large-scale networks ap-
pear in engineering and nature, e.g., power networks [1],
[2], transportation networks [3], biological networks [4], and
spatially discretized meteorological networks [5], [6]. For
analysis and control of these networks, various kinds of esti-
mation/prediction techniques have been extensively developed.
Examples involve energy management systems (EMS), where
computationally efficient estimation/prediction of the behavior
of large-scale power networks plays an important role in the
improvement of EMS control and operation: see, e.g., [7].
Thus, as in this example, the development of a computationally
efficient estimator design method is critical in handling large-
scale network systems.

Related to the computationally efficient estimator design,
methods based on model reduction techniques for designing
low-dimensional observers have been presented. For example
in [8], a Luenberger-type low-dimensional observer is de-
signed for a low-dimensional model obtained by the balanced
truncation [9], which does not preserve the network structure
of the original system. Furthermore, since the relation between
the model reduction error and the estimation error is not
clear, the construction of low-dimensional observers is rather
heuristic. In [10], the authors proposed a low-dimensional ob-
server design method by reducing an original observer having
desirable performance such that the performance degradation
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is small. However, the estimation error for the resultant low-
dimensional observer is not explicitly taken into account.

From another viewpoint, distributed estimator design is
also gaining attention: see, e.g., [11], [12], [13], [14], [15].
For example, a design method of a distributed Kalman filter
consisting of local Kalman filters is presented in [11]. In that
work, the information matrix of a centralized Kalman filter,
defined as the inverse of covariance matrices, is approximated
by smaller information matrices, which yield local Kalman
filters for individual subsystems. Early work on distributed
estimation was shown in [12], where a set of decentralized
observers is constructed for individual subsystems. Indeed,
these methods can produce distributed estimators for network
systems in a systematic manner. However, they require a
priori knowledge of decomposition of the whole system into
subsystems, i.e., the set of clusters is assumed to be available
in advance. In practical applications, this kind of subsystem
decomposition, e.g., coherent generator groups in power net-
works, is not always given clearly. Therefore, it is crucial to
develop an estimator design method that can systematically
find a set of subsystem clusters.

A cluster construction method with explicit consideration on
the dynamics of network systems has been developed in [16],
[17], called clustered model reduction. In this method, using
the controllability gramian of the original system, we consider
clustering nodes (subsystems) that have similar behavior for
input signals. By aggregating the state of clustered nodes into
lower-dimensional ones, we obtain an aggregated model that
preserves the network structure among the clusters.

On the basis of this clustered model reduction, this paper
proposes a novel type of observers that perform the projective
state estimation of each cluster for large-scale networks. In
fact, large-scale network systems often involve a number of
states (nodes) having similar behavior for input signals; see
Section II-A for a motivating example. This finding suggests
us a possibility to construct a type of observers that can
efficiently capture macroscopic system behavior as the average
of clustered states having similar behavior. To design such an
observer with an estimation error assurance, called average
state observer, we first derive a tractable representation of
the estimation error system, which provides a clear insight
into deriving an upper bound of the estimation error by the
average state observer. Based on this result, we next propose a
systematic procedure for designing the average state observer
that satisfies an estimation error bound in terms of the H2

or H∞-norm. The main advantages of the proposed design
method are twofold: a relation between the state clustering
and the estimation error is theoretically clarified, and a set of
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clusters can be systematically constructed while the dynamics
of the original network system is taken into account.

The paper [18], which is a preliminary version of this paper,
has proposed the framework of low-dimensional observers,
including average state observers as a special case. However,
[18] does not provide explicit design procedure specialized for
average state observers and not discuss the network structure
of average state observers to be designed. In contrast, this
paper focuses on average state observers and presents a method
for designing average state observers with an estimation error
assurance. Moreover, in this paper, we consider a thermal
diffusion network system as an example, and numerically
investigate the efficiency of the average state observers, discuss
the network structure of the average state observer from the
viewpoint of the dynamical property of thermal diffusion
networks, and investigate the trade-off relation between the
number of average states and the estimation performance.

This paper is organized as follows. In Section II-A, we first
introduce an example to explain why we consider the average
state observer design for network systems. In Section II-B,
we briefly review the clustered model reduction in [16], [17].
In Section II-C, we propose an average state observer on the
basis of this model reduction technique. Next, we formulate
an average state observer design problem. In Section III-A,
we describe a road map for the systematic design of average
state observers and provide an estimation error bound. On
the basis of this result, an average state observer design
algorithm is provided in Section III-B. In Section IV, we
show the efficiency of the average state observer through the
numerical example of a thermal diffusion network system.
Finally, concluding remarks are provided in Section V.
Notation The following notation is used in this paper:
R set of real numbers
In n-dimensional identity matrix
eni the ith column of In
1n n-dimensional column vector whose

each element is 1
enI enI := [eni1 , . . . , e

n
im
] for i ∈ I :=

{i1, . . . , im}
M ≺ 0n (M � 0n) negative (positive) definiteness of a

symmetric matrix M ∈ R
n×n

diag(M1, . . . ,Mn) block-diagonal matrix having matri-
ces M1 · · ·Mn on its diagonal blocks

tr(M) trace of a matrix M
‖M‖F the Frobenius norm of a matrix M

The L2-norm of a square integrable function v(t) ∈ R
n is

defined by

‖v(t)‖L2
:=

(∫ ∞

0

vT(t)v(t)dt

) 1
2

.

The H∞-norm of a stable proper transfer matrix G and the
H2-norm of a stable strictly proper transfer matrix G are
respectively defined by

‖G(s)‖H∞ := sup
ω∈R

‖G(jω)‖,

‖G(s)‖H2
:=

(
1

2π

∫ ∞

−∞
tr(G(jω)GT(−jω))dω

) 1
2
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Fig. 1. Network system composed of 50 scalar subsystems.
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Fig. 2. Transient responses of the network system as shown in Fig. 1

where ‖ · ‖ denotes the induced 2-norm.

II. PROBLEM FORMULATION

A. Motivating Example of Average State Observer Design

In this paper, we deal with a linear dynamical system com-
posed of n subsystems, each of which is supposed to be a one-
dimensional system for simplicity. For each i ∈ {1, . . . , n},
the dynamics of the ith subsystem are described by

ẋi = ai,ixi +
∑
j �=i

ai,jxj +

mu∑
k=1

bi,kuk (1)

where xi ∈ R denotes the state and uk ∈ R denotes the kth
external input signal for k ∈ {1, . . . ,mu}. In (1), ai,j = 0 if
the ith subsystem is not instantaneously affected from the jth
subsystem.

To explain why we consider the average state observer de-
sign for network systems, we introduce the following example.
Let us consider a network system in (1) with n = 50 and
mu = 1. We show the schematic depiction of the network
system in Fig. 1, where the circles represent the subsystems.
Furthermore, in Fig. 2, we show the transient responses of the
all 50 subsystems for a random initial state and input signal.
Even though 50 trajectories of the state variables are in this
figure, we can see that they are aggregated into five clusters
at around t = 30, denoted by the lines with circles, squares,
triangles, diamonds, and stars. In view of this, we consider a
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novel low-dimensional observer called average state observer
for network systems, which estimates only the average of the
state variables showing similar behavior to capture the average
behavior of the entire network system.

To design the average state observer, in the next subsection,
we briefly review the clustered model reduction proposed in
[16], [17], where an approximated network model representing
the dynamics of the average behavior of the system of interest
is provided.

B. Brief Review of Clustered Model Reduction

Let us consider a network system in (1). Using the notation
of

x = [x1, . . . , xn]
T, u = [u1, . . . , umu

]T

and

A :=

⎡
⎢⎣
a1,1 · · · a1,n

...
. . .

...
an,1 · · · an,n

⎤
⎥⎦ , B :=

⎡
⎢⎣
b1,1 · · · b1,mu

...
. . .

...
bn,1 · · · bn,mu

⎤
⎥⎦ ,

we give the whole network system as in

Σ : ẋ = Ax+Bu. (2)

For simplicity, this system is supposed to be stable, i.e., A is
a Hurwitz matrix.

Given a network system Σ in (2), we construct a reduced
network model approximating the transfer function of Σ from
u to x while preserving the network structure of Σ. More
specifically, we aggregate the state variables having similar
behavior to construct a reduced network model. In what
follows, we focus on the behavior of Σ for the input signal
u. In view of this, without loss of generality, we assume that
x(0) = 0.

We first introduce the following notion of aggregation
matrix:

Definition 1: Given Σ in (2), the family of an index set
{Il}l∈L for L := {1, . . . , L} is called a cluster set, each of
whose elements is referred to as a cluster if each element Il
is a disjoint set of {1, . . . , n} such that⋃

l∈L

Il = {1, . . . , n}. (3)

Furthermore, define an aggregation matrix compatible with
{Il}l∈L as in

P := diag

(
1

n1
1T
n1
, . . . ,

1

nL
1T
nL

)
Π ∈ R

L×n (4)

where nl := |Il| and Π ∈ R
n×n is the permutation matrix,

i.e.,
Π := [enI1

, . . . , enIL
]T ∈ R

n×n. (5)

The matrix P in (4) plays a role of aggregation of the states
indicated by a cluster set {Il}l∈L. For the understanding of the
structure of P , we provide an example of aggregation matrices
as follows. Given Σ in (2) with n = 5, consider a cluster set
given by

I1 = {1}, I2 = {2, 5}, I3 = {3, 4}.

The aggregation matrix compatible with this cluster set is
given by

P =

⎡
⎣ 1 0 0 0 0

0 0.5 0 0 0.5
0 0 0.5 0.5 0

⎤
⎦ .

Using the notion of this aggregation matrix, we define the
following aggregated network system, where the lth element
of its state variable represents the aggregation (average) of a
set of states {xi}i∈Il

:
Definition 2: Given Σ in (2), consider a cluster set {Il}l∈L

and the compatible aggregation matrix P in Definition 1.
Define an aggregated network model Σ̂ by

Σ̂ : ˙̂x = PAP †x̂+ PBu (6)

where P † ∈ R
n×L is the pseudoinverse of P , i.e.,

P † = ΠT diag (1n1
, . . . ,1nL

) . (7)

Note that the aggregated network model Σ̂ is determined if a
cluster set {Il} is determined. In [16], [17], the authors have
present a method to find a cluster set such that the transfer
function from u to the lth average state x̂l approximates that
from u to xi for all i ∈ Il and l ∈ L.

Remark 1: In Definition 1, the aggregation matrix P in (4) is
slightly different from that in [16], [17], where each element of
the block-diagonal matrix in (4) is normalized by

√
nl, but not

nl. In this paper, we use P defined in (4), i.e., that normalized
by nl, because it is useful in understanding the concept of the
average state observer introduced in Section II-C.

C. Average State Observer Design Problem

On the basis of the clustered model reduction in Section
II-B, in this paper, we propose an observer called the average
state observer which estimates the average states of the
original network system Σ in (2).

Note that the system Σ is assumed to be stable and to have
a zero initial state. One may think that the observer design for
such a system is trivial. However, the estimation error depends
not only on the initial state, but also on the input signal (see
Lemma 1 in Section III-A). Furthermore, the average state
observer introduced below is not necessarily stable in general
even though Σ is stable. Thus, it is not trivial to design an
average state observer for Σ satisfying the above assumptions.
One extension to the system with a nonzero initial state is
described in Remark 4.

Given a stable Σ in (2) with a zero initial state, define the
measurement output signal by

y = Cx+Du (8)

where y ∈ R
my , and define the average state observers as

follows:
Definition 3: Given Σ in (2) with y in (8), consider a

cluster set {Il}l∈L and the compatible aggregation matrix P
in Definition 1. Define an average state observer Ô by

Ô :

{
˙̂
ξ = PAP †ξ̂ + PBu+H(y − ŷ)

ŷ = CP †ξ̂ +Du
(9)
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with ξ̂(0) = 0 for simplicity, where H ∈ R
L×my is an

observer gain.

One of the remarkable points we have to note here is that
y in (9) is not a measurement output signal of the aggregated
network model Σ̂, but of the original network system Σ. Thus,
the average state observer Ô is not a Luenberger observer for
the aggregated network model Σ̂.

Next, we formulate a problem for designing Ô in (9), i.e.,
designing H and P (or equivalently, {Il}l∈L), such that the
observer estimates the average behavior of Σ in (2), i.e., ξ̂l(t)
captures all {xi(t)}i∈Il

for any l ∈ L. To this end, we define
the estimation error of Ô by

δ := x− P †ξ̂ (10)

where P † is defined in (7), and we quantify the magnitude of
the estimation error by the H2-norm of the transfer function
from u to δ, denoted by Δ(s), for simplicity. In this setting,
we consider the following average state observer problem as
follows:

Problem 1: Given a positive constant ε ≥ 0 and a stable
Σ in (2) with a zero initial state and y in (8), find Ô in (9)
satisfying

‖Δ(s)‖H2
≤ ε. (11)

III. AVERAGE STATE OBSERVER DESIGN

A. A Road Map for Average State Observer Design

To solve Problem 1 in the previous section, we provide a
tractable representation of the estimation error δ in (10) as
follows:

Lemma 1: Consider Σ in (2) with y in (8) and define Ô in
(9). Then, δ in (10) obeys

E :

{ Ẋ = AX + Bu
δ = PX (12)

with

A :=

[
PAP † −HCP † (PA−HC)P

†
P

0 A

]

B :=

[
0
B

]
, P :=

[
P † P

†
P

]

where P ∈ R
(n−L)×n and P

† ∈ R
n×(n−L) satisfy

P †P + P
†
P = In, PP

†
= In−L (13)

for P in (4).

Proof : Define X̂ := [ξ̂T xT]T. Then, we have{
˙̂X = ÂX̂ + B̂u
δ = P̂X̂

where

Â :=

[
PAP † −HCP † HC

0 A

]
, B̂ :=

[
PB
B

]
P̂ := [−P † In].

Taking a coordinate transformation by

T :=

[ −IL P
0 In

]
= T−1

as T ÂT−1, T B̂ and P̂T−1, we have the claim. �
In Lemma 1, the error system E in (12) is the generalization

of that for a Luenberger observer, i.e.,

δ̇ = (A−HC)δ.

In fact, if Il = {l}, i.e., P = P † = In, then Ô in (9) becomes
a Luenberger observer and we have

A =

[
A−HC 0

0 A

]
, B =

[
0
B

]
, P = [In 0] .

Thus, δ in this case is independent of any input signals. In
contrast, in the average state observer design, the estimation
error δ depends on input signals u because the average state
observer cannot capture the exact behavior of the system for
u.

Note that P
†
P in the error system E is an orthogonal projec-

tion matrix since P
†
P is a complementary of the orthogonal

projection matrix P †P . Even though the orthogonal projection
matrix P

†
P offers a degree of freedom in choosing its basis,

without loss of generality we suppose P
†
P = P

T
P .

On the basis of this error analysis, let us consider the
systematic design of Ô in (9). The transfer function of the
estimation error system in (12) from u to δ can be written as

Δ(s) = ΞP,H(s)UP (s) (14)

where

ΞP,H(s) := P †(sIL −AΞ)
−1(PA−HC)P

T
+ P

T
(15)

AΞ := PAP † −HCP †

and
UP (s) := P (sIn −A)−1B. (16)

Compared to the clustered model reduction, in the average
state observer design, we are required to design not only P ,
but also H such that ‖Δ(s)‖H2

is small. However, Δ depends
on the design parameters P and H in a nonlinear fashion.
Thus, the simultaneous design of P and H making ‖Δ(s)‖H2

small is difficult.
To overcome this difficulty, we utilize the following facts:
• Parameter H does not affect UP , but ΞP,H only.
• UP depends on P (equivalently P ), not on H .
• It follows that

‖Δ(s)‖H2
≤ ‖ΞP,H(s)‖H∞‖UP (s)‖H2

.

On the basis of these facts, we propose a road map for
designing P and H as follows. First, we determine P to make
‖UP (s)‖H2

small. Next, for a fixed P , we determine H to
make ‖ΞP,H(s)‖H∞ small.

Regarding the first step, we introduce the following lemma
from [16], [17], which is useful in determining P (or equiva-
lently, {Il}l∈L).
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Lemma 2: Consider a stable Σ in (2). Let Φ 	 0n be given
satisfying

AΦ+ ΦAT +BBT = 0. (17)

Define Φ 1
2

∈ R
n×n such that Φ = Φ 1

2
ΦT

1
2

. Given θ ≥ 0,
suppose that there exist {Il}l∈L in Definition 1 and φl ∈ R

1×n

such that∥∥∥∥(enIl
)TΦ 1

2
− 1√

nl
1nl

φl

∥∥∥∥
F

≤ √
nlθ, l ∈ L. (18)

Then, UP (s) in (16) satisfies

‖UP (s)‖H2
≤ κθ (19)

where

κ :=
(∑L

l=1 nl(nl − 1)
) 1

2

. (20)

In this lemma, θ is a design parameter for regulating
coarseness for constructing a cluster set {Il}l∈L. This lemma
shows that the norm of UP can be bounded by using the
coarseness parameter θ.

Next, for a given P under the assumptions in Lemma 2, we
consider determining H to make ‖ΞP,H(s)‖H∞ small. To this
end, we give the following theorem:

Theorem 1: Consider Problem 1. Suppose that there exist
{Il}l∈L and φl ∈ R

1×n satisfying (18). Give P in (4). If
(PAP †, CP †) is detectable, then there exist

γ > 0, X � 0L, Y ∈ R
L×my

satisfying[
sym(XPAP † − Y CP †) + (P †)TP † ∗

PATPTX − PCTY T (1− γ2)In−L

]
≺ 0n

(21)
where sym(M) := M +MT. Furthermore, Ô in (9) with

H = X−1Y (22)

satisfies
‖Δ(s)‖H2

< γκθ (23)

with κ in (20) where Δ is defined as the transfer function from
u to δ in (10).

Proof : Note that there exists an observer gain H stabilizing
ΞP,H(s) in (15) because (PAP †, CP †) is detectable. Thus,
there exists γ such that

‖ΞP,H(s)‖H∞ < γ. (24)

Furthermore, it follows from the bounded real lemma [19]
and the Schur complement [19] that (24) is equivalent to (21)
and (22). Hence, there exist γ > 0, X � 0L, Y ∈ R

L×my

satisfying (21) and (22). Furthermore, combining Lemma 2,
(23) follows. �

In this theorem, LMI in (21) is used for determination of
H . Furthermore, this theorem provides an upper bound of the
estimation error caused by an average state observer designed
along with the proposed road map.

Remark 2: The detectability of the pair (PAP †, CP †)
depends on C, which is not considered in the cluster con-
struction, for which we use the controllability gramian of the

original network system. Therefore, the detectability is not
always guaranteed in general. One remedy for this is to find
P such that PAP † is Hurwitz, which is sufficient for the
detectability. In fact, the stability of PAP † can be ensured
by the clustered model reduction method for diagonally stable
systems, i.e. the class of systems admitting a diagonal Lya-
punov function, including the bidirectional networks and the
positive networks; see [16] and [17] for details.

Remark 3: In this paper, we evaluate the magnitude of Δ(s)
by the H2-norm and show an upper bound of ‖Δ(s)‖H2

. A
similar result based on H∞-norm evaluation is also available
by constructing a cluster set on the basis of the Hessenberg
transformation: see [16] in detail.

Remark 4: We have shown a fundamental result in average
state observer design for a network system with a zero initial
state. This result can be extended to the case where the system
has an unknown nonzero initial state as follows.

Even though the initial state of Σ in (2) is unknown in
general, the existing range of the initial state is available in
some cases, e.g., thermal diffusion processes starting near an
equilibrium state enables us to estimate an existing range for
the initial state of the process. In view of this, let us assume
that an existing range of the initial state is available, i.e., x(0)
is assumed to satisfy

x(0)x(0)T � Q (25)

where Q 	 0n is an available bound of the existing range
of x(0). In the remainder of this remark, for a given Σ, we
consider designing an average state observer Ô in (9) to make
the estimation error δ in (10) small for any x(0) satisfying
(25).

The estimation error δ in (10) depends on x(0) and u, which
is denoted by δ(t;x(0), u). Since the dynamics of the error
system are linear, δ(t;x(0), u) can be represented as the sum
of the error factors caused by x(0) and u, i.e.,

δ(t;x(0), u) = δx(t) + δu(t)

where

δx(t) := δ(t;x(0), 0), δu(t) := δ(t; 0, u).

With these settings, we show upper bounds of ‖δx(t)‖L2
and

‖δu(t)‖L2
. Let Φ 	 0n be given satisfying

AΦ+ ΦAT +BBT +Q = 0 (26)

instead of (17). Suppose the assumptions in Theorem 1 hold.
Let Ô in (9) be given with H in (22). Then, δx satisfies

‖δx(t)‖L2
< γκθ + tr

1
2 (PTXPQ) (27)

with κ in (20) for any x(0) satisfying (25). Furthermore, δu
satisfies

‖δu(t)‖L2
< γκθ (28)

for any unit impulse input u.
Remark 5: The proposed method can be extended to the

case of multi-dimensional subsystems. More specifically, for
network systems where the state of each subsystem represents
the same physical quantity, we can design average state
observers to estimate the average of the states of subsystems
that show similar behavior.
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Fig. 3. Thermal diffusion system.

B. Design Algorithm

In this subsection, we present an algorithm for designing an
average state observer. For the completeness of the algorithm,
we first show the procedure in [16], [17] for constructing a
cluster set {Il}l∈L satisfying (18) for a given θ ≥ 0 as follows.

Suppose that we have l clusters {I1, . . . , Il} and consider
constructing Il+1. To this end, we define

J := {1, . . . , n}\
l⋃

k=1

Ik. (29)

First, choose j ∈ J . Next, find

Il+1 = {i ∈ J \{j}| ∥∥φ[i] − φ[j]

∥∥ ≤ θ} (30)

where φ[i] ∈ R
1×n is the ith row vector of Φ 1

2
. Then, a new

cluster Il+1 and φl+1 =
√
nl+1φ[j] satisfy∥∥∥∥(enIl+1

)TΦ 1
2
− 1√

nl+1
1nl+1

φl+1

∥∥∥∥
F

=
∑

i∈Il+1

‖φ[i] − φ[j]‖.

Hence, Il+1 and φl+1 satisfy (18).
Next, we summarize an algorithm to solve Problem 1 as

follows:
1) Give θ ≥ 0.
2) Find {Il}l∈L along with the above procedure.
3) Find X � 0L and Y ∈ R

L×my such that (21) is satisfied
while minimizing γ > 0.

4) If no solutions exist, take a smaller θ, and go back to 2).
5) Construct Ô in (9) with H given by (22).
6) If ‖Δ(s)‖H2

> ε, take a smaller θ, and go back to 2).
Finally, it should be noted that the number of decision vari-
ables of LMI in (21) is O(L2). This implies that the proposed
design algorithm is computationally tractable if L is small.

IV. NUMERICAL EXAMPLE

A. Spatially Discretized Thermal Diffusion Network

In this section, we show the efficiency of the proposed av-
erage state observer. We deal with a network system given by
spatial discretization of a thermal diffusion system composed
of a metal plate, a heater and the air as shown in Fig. 3.

TABLE I
PARAMETERS OF THERMAL DIFFUSION NETWORK.

Thermal diffusivity[mm2/s] λ 29.1
Thermal conductivity[W/(mmK)] β 2.0 ×104

Heat transfer coef. to air[W/(mm2K)] ha 2.0×107

Heat transfer coef. to heater[W/(mm2K)] hh 2.6×108

In what follows, we take an XY orthogonal coordinate
given by

(X,Y ) ∈ D := [0, 180]× [0, 20]

as shown in Fig. 3. Let T (X,Y, t) be the temperature of the
metal plate at the position (X,Y ) and time t. The heat transfer
properties of the metal plate are described by a rectangular
coordinate diffusion equation [20] as in

∂T

∂t
= λ

(
∂2T

∂X2
+

∂2T

∂Y 2

)
, (X,Y ) ∈ int(D) (31)

where int(D) is the inside of D and λ denotes a diffusion
coefficient. In addition, the metal plate exchanges heat with
the air and the heater at the boundary of D as follows.

The heat exchange with the air is described with the
Neumann type boundary condition

β
∂T

∂n
= ha(T − Ta), (X,Y ) ∈ Sa (32)

where Sa is a set of contact points with the air, n is a
unit vector normal to Sa, β is the coefficient of thermal
conductivity, Ta is the temperature of the air and ha is the
coefficient of heat transfer between the air and the metal plate.
For simplicity, we suppose Ta ≡ 0 for any t, X and Y .

The heat budget for the heater is described by

β
∂T

∂Y
= hh(T − u), X ∈ X , Y = 0 (33)

where X ⊂ [0, 180] is the set of contact points with the heater
over Y = 0 and u is the temperature of the heater. The heater
is assumed to have a uniform temperature distribution, i.e., u
is independent of X and Y .

Finally, discretizing (31)-(33) with steps δX , δY for X and
Y axes by means of the finite volume method [21], we have
a stable Σ in (2), where x ∈ R

n is a vector of spatially
discretized temperature T . In addition, a measurement output
signal y ∈ R

3 is taken for the plate temperatures at the
positions shown by circles in Fig. 3.

B. Demonstration of Average State Observer Design

In this subsection, we demonstrate the average state ob-
server design for a spatially discretized thermal diffusion
network with δX = δY = 2[mm], which is a lattice network
system with n = 1001. The parameters of the network system
is summarized in Table I. In this demonstration, we evaluate
the estimation error of the designed average state observer by
the H∞-norm to demonstrate the worst case scenario.

We first investigate the relation between the coarseness
parameter θ in (18) and a cluster set {Il}l∈L. To see this, we
construct {Il}l∈L varying the parameter θ. More specifically,
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Fig. 5. Estimation error ratio with respect to the number of cluster sets.

at Step 1) in the algorithm in Section III-B, we vary θ
in the range [10−2.9, 10−2]. Next, at Step 2), we construct
{Il}l∈L with respect to each value of θ. In Fig. 4, we plot
the number of resultant clusters L versus the value of θ. This
figure shows that the number of clusters, which coincides with
the dimension of the average state observer, decreases as θ
increases.

Next, for each of resultant cluster set, we design average
state observer Ô along with the Steps 3)-5). We investigate the
relation between the dimension of Ô and the estimation perfor-
mance of Ô, which is quantified by the estimation error ratio
‖Δ(s)‖H∞/‖X(s)‖H∞ with X(s) denoting the transfer func-
tion from u to x. In Fig. 5, we plot ‖Δ(s)‖H∞/‖X(s)‖H∞
versus the dimension of Ô. This figure shows that the estima-
tion error ratio decreases as the dimension of Ô increases. Fur-
thermore, Figs. 4 and 5 imply that the estimation performance
improves in compensation for the increase of the dimension
of the average state observer.

Next, let ε = 0.09 in Problem 1. Then, ‖Δ(s)‖H2
by

24-dimensional Ô becomes 0.08, which is less than ε. In
Fig. 6, we show the resultant cluster set {Il}l∈{1,...,24}. In
this figure, there are 24 regions surrounded by lines, where
each region represents a set of states belonging to a compatible
cluster, e.g., the zoomed up region in this figure represents ten
corresponding states (grids) of the original network system.
Fig. 6 shows that regions far from the heater, e.g., those
around X ∈ [120, 180], are more roughly clusterized than
those close to the heater, e.g., those around X = 0. This

0 60 120 180

Y
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m
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0

1
0

2
0

X[mm]

Fig. 6. Set of clusters in the case L = 24.
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Fig. 7. Trajectories of {xi(t)}i∈I4
and ξ̂4(t).

fact reflects the diffusive property of the system, i.e., the
temperature distribution tends to become uniform further as
being far from the heater. Thus, the cluster set is constructed
with explicit consideration of the dynamical properties of the
network system.

Next, we show the efficiency of the 24-dimensional av-
erage state observer by comparing the trajectories x(t) in
(2) and ξ̂(t) in (9). To see this, we take an input signal as
u(t) = 100+100 sin(t2) so that it contains multiple frequency
waves, and we take x(0) = 20 × 11001 and ξ̂(0) = 0. In
Fig. 7, the blue solid lines and the red dotted line with circles
depict {xi(t)}i∈I4

and ξ̂4(t) where the cluster I4 is shown
in Fig. 6. We omit the other trajectories since they behave
similarly. We can see from Fig. 7 that the estimated signal
ξ̂4(t) stays near the center of the bundles of {xi(t)}i∈I4

. In
addition, we show snapshots of the temperature distribution
of the original system, i.e., x(t), in the left half of Fig. 8 and
show those of the estimated average temperature distributions,
i.e., P ξ̂(t), in the right half of Fig. 8. In addition to Figs. 7
and 8, the fact that the resultant estimation error ratio is 0.038
implies that the resultant average state observer captures the
average behavior of the original network system.

As shown in Fig. 6, the fine grids of the 1001-dimensional
model are clusterized while taking into account the dynamics
of the system. To investigate the effectiveness of this cluster
construction, we compare the case where a cluster set is given
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a priori without considering the system dynamics.
Let us slightly modify the thermal diffusion system (31)-

(33) such that the width of the heater is 10[mm], the coefficient
of the heat transfer to air ha is 2.0 × 109, the coefficient of
the thermal diffusivity λ is 58.3 and three sensors are added at
the points (X,Y ) = (10, 0), (20, 0) and (30, 0). Constructing
A, B and C by the spatial discretization of this thermal
diffusion system, we make another cluster set {Ir

l }l∈{1,...,25}
compatible with the uniform discretization with the steps
δX = 36[mm] and δY = 4[mm] as in Fig. 9. For the cluster
set, we construct a 25-dimensional observer in (9) whose gain
is obtained by solving the LMI in (22). We denote the observer
by Ôr and the state of the observer by ξ̂r.

In Fig. 10, the green dotted line with the squares depicts
the first element of ξ̂r, denoted by ξ̂r1, which represents an
estimated average temperature of the region compatible with
Ir
1. Furthermore, the blue solid lines in Fig. 10 depict the

trajectories of the state corresponding to the two gray-colored
regions in Fig. 9. We can see from Fig. 10 that the two bundles
of trajectories are distinct from each other. As a result, the
H2-norm of the estimation error is 0.36. Next, we construct a
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Fig. 9. Set of clusters {Ir
l }l∈{1,...,25} compatible with the spatial discretiza-

tion with the steps δX = 36[mm] and δY = 4[mm].
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Fig. 10. Trajectories of xi(t) belonging to the filled region in Fig. 9 and the
estimated signals by Ô and Ôr.

25-dimensional average state observer Ô in (9) whose cluster
set is shown in Fig. 9 as the regions surrounded by the
dotted lines. In Fig. 10, the red lines with the circles depict
the estimated signals corresponding to the two gray-colored
regions in Fig. 9, denoted by ξ̂1 and ξ̂2. We can see from
Fig. 10 that each of the estimated signals stays near the center
of the corresponding bundle. In this case, the H2-norm of
the estimation error is 0.15. These results demonstrate that
the explicit consideration of the system dynamics for cluster
construction improves the performance of the average state
estimation.

V. CONCLUSION

In this paper, we have proposed a novel observer called
the average state observer that can capture the average be-
havior of large-scale network systems with an estimation
error assurance. To design an average state observer with
explicit consideration of the estimation error, we have derived
a tractable representation of estimation error systems. On the
basis of this representation, we have provided a systematic
procedure to design the average state observer with an upper
bound of the estimation error. The proposed design procedure
offers the advantage that we can systematically determine the
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states showing similar behavior, even though it is nontrivial
to find the states that show the average behavior of the
system in general. Finally, we have shown the effectiveness
of the average state observer through the example of spatially
discretized thermal diffusion networks.

Interesting examples of the application of average state
estimation include power flow estimation/prediction of large-
scale power grids. Since power flow estimation/prediction at
low computational cost is a key tool for improving power grid
operation, this research is expected to form a fundamental
theory of estimation/prediction for large-scale network sys-
tems. However, for practical applications to real large-scale
network systems, the extension of the average state observers
to Kalman filter cases is one of the critical issues. As a first
step towards this extension, in [22] we have proposed average
state Kalman filters where measurement and system noise are
taken into explicit consideration. Application research along
this line will be among future topics of study.
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