
Distributed Design of Locally Stabilizing Controllers for Large-Scale
Networked Linear Systems

Tomonori Sadamoto1,2, Takayuki Ishizaki1,3, Jun-ichi Imura1,3, Bart Besselink4,
Henrik Sandberg3,4, and Karl Henrik Johansson3,4

Abstract— In this paper, we consider designing locally sta-
bilizing controllers, each of which stabilizes each disconnected
subsystem, in a distributed manner for large-scale networked
linear systems. To this end, we design a low-dimensional hier-
archical distributed compensator such that the L2-performance
of the closed-loop system improves as long as that of the locally
stabilizing controllers improves. We solve a controller reduction
problem where the approximation error of the low-dimensional
compensator gets better as long as the performance of the
locally stabilizing controllers improves, while preserving the
hierarchical distributed structure of the original compensator.
Finally, we demonstrate the efficiency of the proposed method
through a numerical example of a power network.

I. INTRODUCTION

As technology advances, control system architecture be-
come larger and more complex. For example, in a smart grid,
it is required to maintain supply-demand balance involving
more than one million consumers and several power plants
[1], [2]. In many cases, such large-scale systems are spatially
distributed and networked. In view of this, it is crucial
to establish a framework for designing distributed control
systems [3], [4].

Even though many distributed controller design methods
have been developed in the literature [5], they do not allow
controller design being done in a distributed manner. In
view of this, a notion of distributed design is introduced
in [6], where a performance limitation of controllers that are
designed in a distributed manner is discussed. These results
were extended to networked control systems in [7]. In [8], a
distributed design method in terms of the L1-induced norm
is developed for positive linear systems. However, we cannot
straightforwardly generalize this result to a broader class of
systems.

In [9], the authors propose a distributed design method
for general networked linear systems. In this method, we
propose a hierarchical distributed compensator design such
that the L2-induced norm performance of the overall closed-
loop system, whose example is shown in Fig. 1, improves
as long as that of each local closed-loop system improves,
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Fig. 1. Example of the hierarchical distributed control system with two
layers for a networked system composed of four subsystems Σ1, · · · ,Σ4.
The family {Φ[2],Φ[1]1,Φ[1]2} is called a hierarchical distributed com-
pensator and κi is called a locally stabilizing controller in the sense that
it stabilizes the local closed-loop system (Σi, κi). The notation of signals,
e.g., u[2], are defined in Section II.

which enables us distributed design of locally stabilizing
controllers. However, the compensator in each layer, e.g.,
Φ[1]1 and Φ[1]2 in the first layer and Φ[2] in the second
layer in Fig. 1, is necessarily the same dimensional system
as the system to be controlled, e.g., the networked system
composed of Σ1, · · · ,Σ4 in Fig. 1. Thus, the proposed
method does not fully comply with practical applications of
large-scale networked systems.

Against this background, in this paper, we propose a
design method of low-dimensional hierarchical distributed
compensators such that the L2-induced norm performance
of the closed-loop system improves as long as that of the
local closed-loop system improves. To this end, we take
a controller reduction approach with explicit consideration
on the influence of the controller approximation error on
the closed-loop system. More specifically, supposing that a
hierarchical distributed compensator is given by the design
method in [9], we find a low-dimensional compensator such
that

1) the trajectory of the system state controlled by the
low-dimensional compensator gets closer to that con-
trolled by the original compensator as long as the L2-
induced norm performance of local closed-loop system
improves, and

2) the low-dimensional compensator has the same hier-
archical distributed structure as that of the original



compensator.

The controller reduction problem having the difficulties 1)
and 2) cannot be solved by the straightforward use of
existing model reduction methods. Regarding to 1), there
are no fully developed model reduction methods such that
the approximation error improves as long as the performance
of a part of the original system improves. Regarding to 2),
model reduction methods preserving the network structure of
the original system are proposed in the literature, e.g., [10],
[11]. However, in [10], it is not necessarily guaranteed that
there exist block-diagonal controllability and observability
gramians satisfying Lyapunov inequalities in general and
the method in [11] is not applicable to general networked
systems such as strongly interconnected networked systems.
To overcome the difficulties 1) and 2), in this paper, we
explicitly utilize the hierarchical distributed structure of the
closed-loop system. More specifically, taking into account
the inherent hierarchy of information transmission, which
can be represented as the block-triangular structure of a
coordinate-transformed closed-loop system, we show that the
approximation error of compensators in upper layers does
not affect those in lower layers. Next, using an orthogonal
projection [12], we clarify the relation between the approxi-
mation error and the performance degradation of the closed-
loop system. Finally, the efficiency of the proposed method
is demonstrated through a numerical example of a power
network.

The organization of this paper is as follows: In Section II,
we first review the distributed design method proposed in [9]
and we formulate a controller reduction problem to design
a low-dimensional hierarchical distributed compensator. In
Section III, we propose a method to solve the controller
reduction problem. Furthermore, we show that the approxi-
mation error bound improves as long as the L2-induced norm
performance of the local closed-loop system improves. In
Section IV, we demonstrate the efficiency of the proposed
method through an example of a power network.

Notation: We denote the set of real numbers by R and the
cardinality of a set I by |I|. In addition, we denote the n-
dimensional identity matrix by In, where the subscript n is
omitted when no confusion arises. Furthermore, for N =
{1, . . . , N}, we denote the block-diagonal matrix having
matrices M1, . . . ,MN on its diagonal blocks by dg(Mi)i∈N,
where the subscript of i ∈ N is omitted when no confusion
arises. The L2-norm of a square integrable function v(t) :

R �→ R
n is defined by ‖v(t)‖L2

:=
(∫∞

0
vT(t)v(t)dt

) 1
2 . The

H∞-norm of a stable proper transfer matrix G is defined by
‖G(s)‖H∞ := sup

ω∈R

‖G(jω)‖ where ‖ · ‖ denotes the induced

2-norm.

II. PROBLEM FORMULATION

A. Review of Hierarchical Distributed Control

1) Motivation of Hierarchical Distributed Control: In this
subsection, we review the hierarchical distributed control
proposed in [9], which enables distributed design of locally

stabilizing controllers explained below. We deal with net-
worked linear systems composed of N subsystems. For each
i ∈ N := {1, . . . , N}, the dynamics of the ith subsystem is
described by

Σi :

⎧⎨
⎩

ẋi = Aixi +Biui +
∑

j �=i Ji,jyj
yi = Cixi

wi = Sixi

(1)

where xi ∈ R
ni is a state, ui ∈ R

mi and wi ∈ R
qi are

used for connection to a locally stabilizing controller, and
yi ∈ R

pi is an output signal used for interconnection among
subsystems. The matrices Ai, Bi, Ji,j , Ci and Si are real
and of compatible dimensions. Note Ji,j = 0 if the ith and
jth subsystems are disconnected. We assume that yi and wi

are measureable.
Let us consider a locally stabilizing controller given by

κi :

{
ξ̇i = Kiξi +Hiwi

ui = Miξi
(2)

where ξi ∈ R
ri . For simplicity, we take ξi(0) = 0.

Throughout this paper, the symbols in bold font, e.g., Ki are
parameters to be designed. Furthermore, we denote a family
of locally stabilizing controllers by {κi}i∈N. If no confusion
arises, we omit the subscript i ∈ N.

Let us suppose the situation that we have {κi} stabilizing
the whole network system, and suppose that we change only
κi. Existing distributed controller design methods, e.g., [5],
do not fully fit for this situation from a viewpoint of com-
putational costs for controller design because the methods
require us to design all of {κi}, but not only κi. Thus, it
is desired that we can design locally stabilizing controllers
in a distributed manner, which we call distributed design of
locally stabilizing controllers. For example if the subsystems
are disconnected, i.e., Ji,j = 0 for all i, j ∈ N, we can design
κi individually by taking into account the local closed-loop
system (Σi, κi), but not the overall system. Furthermore,
we clearly see that the L2-induced norm performance of
the whole closed-loop system improves as long as each κi

improves the performance of the local closed-loop system.
However, in general cases, i.e., Ji,j �= 0, we have a problem
that the distributed design no longer guarantees the stability
of the whole closed-loop system. To overcome this prob-
lem, we consider compensating the networked system such
that the compensated networked system enables distributed
design of locally stabilizing controllers.

2) Hierarchical Distributed Compensator Design: In
what follows, we use the notation

◦ :=

N∑
i=1

◦i, ∀◦ ∈ {n,m, p, q, r}

and

J :=

⎡
⎢⎣

J1,1 · · · J1,N
...

. . .
...

JN,1 · · · JN,N

⎤
⎥⎦ ∈ R

n×p. (3)

In addition, we define

A := dg(Ai) + Jdg(Ci) ∈ R
n×n. (4)



Let us introduce a hierarchical structure to networked
systems. Let L := {1, . . . , L} represent a set of system
layers. Furthermore, we introduce a notation to deal with
several subsystems collectively in each layer. We first define
a family of index sets N[1], . . . ,N[L] by {N[l]} such that

N ≥ |N[1]| ≥ · · · ≥ |N[L]| = 1, N[l] = {1, . . . , |N[l]|}. (5)

In addition, for each l ∈ {0, . . . , L− 1}, we define a family
of cluster sets {C[l]i}i∈N[l+1]

such that⋃
i∈N[l+1]

C[l]i = N[l], C[l]i ∩ C[l]j = ∅, i �= j, (6)

where N[0] is regarded as N. Let A[l]i ∈ R
n[l]i×n[l]i denote

the principal submatrices of A compatible with subsystems
belonging to C[l−1]i, and J[l]i ∈ R

n[l]i×p[l]i denote the sub-
matrix of J compatible with interconnection among clusters
in C[l−1]i. By definition, it follows that

∑
i∈N[l]

n[l]i = n and∑
i∈N[l]

p[l]i = p for each l ∈ L, and A[L]1 = A. In the rest
of this paper, we regard A[0]i and n[0]i as Ai and ni for all
i ∈ N.

We give the overall dynamics of the networked system by

Σ :

⎧⎨
⎩

ẋ = Ax+ dg(Bi)u+
∑L

l=1 dg(B[l]i)u[l]

y = dg(Ci)x
w = dg(Si)x+ v

(7)

with x(0) = x0 where u[l] := [uT
[l]1, . . . , u

T
[l]|N[l]|]

T, u[l]i ∈
R

m[l]i and v := [vT1 , . . . , v
T
N ]T ∈ R

q express additional com-
pensation signals from a hierarchical distributed compensator
to be explained below, u := [uT

1 , . . . , u
T
N ]T ∈ R

m and w :=
[wT

1 , . . . , w
T
N ]T ∈ R

q are used for the interconnection to lo-
cally stabilizing controllers, and y := [yT1 , . . . , y

T
N ]T ∈ R

p is
used for not only the interconnection among the subsystems,
but also the interconnection to the hierarchical distributed
compensator. In what follows, the pair (A[l]i, B[l]i), which is
defined as being compatible with the hierarchical structure
of the networked system, is assumed to be stabilizable for
any i ∈ N[l] and l ∈ L.

To construct appropriate input signals of {u[l]}l∈L and v
in (7) towards distributed design of {κi} in (2), we consider
designing a hierarchical distributed compensator given by

Φ[l] :

{
φ̇[l] = dg(E[l]i)φ[l] + Γ[l]y +

∑L
k=l dg(Λ[k]i)u[k]

u[l] = dg(F[l]i)φ[l] +G[l+1]φ[l+1]
(8)

with φ[l](0) = 0 and

v = dg(Ui)φ[1]

where G[L+1] and φ[L+1] are regarded as zero, and

E[l]i ∈ R
n[l]i×n[l]i , Γ[l] ∈ R

n×p, Λ[l]i ∈ R
n[l]i×m[l]i

F[l]i ∈ R
m[l]i×n[l]i , G[l+1] ∈ R

m[l]×n, Ui ∈ R
qi×n[l]i

are design parameters. In what follows, we denote the hier-
archical distributed compensator by {Φ[l]}, the compensated
networked system by (Σ, {Φ[l]}) and the closed-loop system,
which is the interconnected system of (Σ, {Φ[l]}) and {κi}
in (2), by ((Σ, {Φ[l]}), {κi}).

1000 × 10-dim. subsystems

100 ×100-dim. 

10 ×1000-dim. 

1 ×10000-dim. 

Fig. 2. Example of the hierarchical distributed compensator {Φ[l]} for a
networked system composed of 1000 subsystems, each of which is a 10-
dimensional system

The hierarchical distributed compensator, which enables
us distributed design of locally stabilizing controllers, is
provided by the following lemma in [9]:

Lemma 1: Given {N[l]} and {C[l]i}i∈N[l+1]
such that (5)

and (6), consider Σ in (7). Consider {κi} in (2). Give {Φ[l]}
in (8) with

E[l]i = dg(A[l−1]j)j∈C[l−1]i
, Γ[l] =

∑L
k=l dg(J[k]i)i∈N[k]

Λ[l]i = B[l]i, G[l+1] = −dg(F[l]i), Ui = −Si

(9)
and F[l]i stabilizing A[l]i + B[l]iF[l]i. for each l ∈ L. Then,
((Σ, {Φ[l]}), {κi}) is stable for any κi stabilizing (Σi, κi).
Furthermore, consider[

χ̇

ξ̇

]
=

[
dg(Ai) dg(BiMi)

dg(HiSi) dg(Ki)

] [
χ
ξ

]
, χ(0) = x0

(10)
where ξ := [ξT1 , . . . , ξN ]T and define

γ[l]:=
∥∥∥(sI − dg(A[l]i +B[l]iF[l]i)

)−1
dg(J[l]i)dg(Ci)

∥∥∥
H∞

.

(11)
Then, ((Σ, {Φ[l]}), {κi}) satisfies

‖x(t)‖L2
≤

L∏
l=1

(
1 + γ[l]

) ‖χ(t)‖L2
(12)

for all x(0) = x0 ∈ R
n.

In Lemma 1, {Φ[l]} by (8) and (9) can be designed inde-
pendently from locally stabilizing controllers. Furthermore,
(12) shows that the compensated system (Σ, {Φ[l]}) has the
property that the upper bound of the L2-induced norm per-
formance of the closed-loop system improves as long as each
locally stabilizing controller improves the performance of the
system (10), which are the local closed-loop systems without
interconnection among subsystems. This property enables us
distributed design of locally stabilizing controllers.

In Fig. 1, we show an example of the closed-loop system
with the notation of signals. In this figure, Φ[1]1 and Φ[1]2

denote the n[1]1- and n[1]2-dimensional compositional unit
of Φ[1] in (8). Similarly to this, we denote Φ[l]i by the n[l]i-
dimensional unit of Φ[l].

Note that the sum of n[l]i must coincide with the dimen-
sion of the networked system, i.e.,

∑
i∈N[l]

n[l]i = n. In
Fig. 2, we show an example of the hierarchical distributed



compensator for a networked system composed of 1000
subsystems, each of which is a 10-dimensional system. As
we see from this example, the dimension of Φ[l]i becomes
the larger in upper layers. Thus, the hierarchical distributed
compensator is not practical for large-scale networked sys-
tems due to high computational costs for implementation.

B. Low-dimensional Hierarchical Distributed Control Prob-
lem

In this subsection, we consider designing a low-
dimensional hierarchical distributed compensator which en-
ables us distributed design of locally stabilizing controllers.
More specifically, let us consider

Φ̂[l] :{
˙̂
φ[l] = dg(Ê[l]i)φ̂[l] + Γ̂[l]y +

∑L
k=l dg(Λ̂[l,k]i)i∈N[k]

u[k]

u[l] = dg(F̂[l]i)φ̂[l] + Ĝ[l+1]φ̂[l+1]

(13)
with φ̂[l](0) = 0 and

v = dg(Ûi)φ̂[1]

where Ĝ[L+1] and φ̂[L+1] are regarded as zero. Furthermore,

Ê[l]i ∈ R
n̂[l]i×n̂[l]i , F̂[l]i ∈ R

m[l]i×n̂[l]i , Γ̂[l] ∈ R
n̂[l]×p

Ĝ[l+1] ∈ R
m[l]×n̂[l+1] , Ûi ∈ R

qi×n̂[1]i

and Λ̂[l,k]i, whose dimension is defined such that
dg(Λ̂[l,k]i)i∈N[k]

∈ R
n̂[l]×m[k] , are design parameters in

conjunction with n̂[l]i and n̂[l] satisfying

n̂[l] =
∑
i∈N[l]

n̂[l]i.

Note that Λ̂[l,k]i depends on not only k, but also l, unlike
the case of Λ[k]i in (8) because the input port of Φ̂[l] with
respect to u[k] is different for each l ∈ L in general. In what
follows, we deal with the case of n̂[l]i ≤ n[l]i.

Towards the distributed design of locally stabilizing con-
trollers {κi} in (2), we consider designing {Φ̂[l]} in (13)
such that the L2-induced norm performance of the closed-
loop system ((Σ, {Φ̂[l]}), {κi}) improves as that of the local
closed-loop systems (10) improves. To this end, we take a
controller reduction approach. Namely, we first suppose that
a desirable {Φ[l]} in (8) and (9) is given, e.g. it achieves a de-
sirable γ[l] in (11). Next, we approximate the given {Φ[l]} by
{Φ̂[l]} such that the resultant trajectory of the state variables
x of Σ in the closed-loop system ((Σ, {Φ̂[l]}), {κi}) gets
closer to that in the closed-loop system ((Σ, {Φ[l]}), {κi})
as long as the L2-induced norm performance of local closed-
loop system (10) improves. In view of this, we state the
following controller reduction problem:

Problem 1: Given {N[l]} and {C[l]i}i∈N[l+1]
as in (5) and

(6), consider Σ in (7). Let {Φ[l]} in (8) and (9) be given
such that it achieves a desirable γ[l] in (11). Let x̂ ∈ R

n

denote the state variables of Σ in the closed-loop system
((Σ, {Φ̂[l]}), {κi}). Given constant ε > 0, find {Φ̂[l]} in (13)
satisfying

‖x(t)− x̂(t)‖L2
≤ ε‖χ(t)‖L2

(14)

where χ is defined in (10) and x(0) = x̂(0) = x0 for all
x0 ∈ R

n.

It should be noted that the difficulties of this problem are
that

1) the error bound should improve as the L2-performance
of individual local closed-loop system improves, and

2) the approximant {Φ̂[l]} has the hierarchical distributed
structure in (13).

In the next section, we give a solution to Problem 1 by
explicitly utilizing the structure of the closed-loop system.

III. LOW-DIMENSIONAL HIERARCHICAL DISTRIBUTED

COMPENSATOR DESIGN

A. Controller Reduction

In the rest of this paper, for simplicity, we focus on the
case L = 3, which yields L = {1, 2, 3}. We have a similar
result in general cases. In addition, we omit the subscript
1 of the matrices associated with Φ[3] and Φ̂[3], e.g., E[3]

denotes E[3]1.
Note that Φ[3] and each compositional unit of Φ[2], which

is n-dimensional system and n[2]i-dimensional system, re-
spectively, are of higher dimension than Φ[1]i (see also
Fig. 2). In view of this, we consider reducing Φ[3] and Φ[2].
In other words, we take Φ̂[1] as Φ[1], i.e., the parameters of
Φ̂[1] in (13) are taken as

Ê[1]i = E[1]i, F̂[1]i = F[1]i, Γ̂[1] = Γ[1]

Ûi = Ui, Λ̂[1,k]i = Λ[1]i

(15)

for each i ∈ N[1] and k ∈ L.
To guarantee (14), it suffices that the approximation error

of the closed-loop systems is independently evaluated by
using individual local closed-loop systems (10) and systems
without including any information on locally stabilizing
controllers. More specifically, let us consider the following
two transfer matrices associated with {Φ[l]} and {Φ̂[l]}:

g(s) := [0, In](sI −A)−1B, ĝ(s) := [0, In](sI − Â)−1B̂
(16)

where A, Â, B and B̂ are given in (17). Note that they are
completely independent from locally stabilizing controllers
{κi} in (2). Using these systems, we evaluate the approxi-
mation error as follows:

Theorem 1: Consider Problem 1 and {Φ̂[l]} in (13) and
(15). Define g(s) and ĝ(s) in (16). If Â is stable, then

‖x(t)− x̂(t)‖L2
≤ ‖χ(t)‖L2

‖g(s)− ĝ(s)‖H∞ (18)

where χ is defined as in (10) and x(0) = x̂(0) = x0 for any
x0 ∈ R

n.

Proof: Omit the proof due to page limitation.
Theorem 1 shows that we can solve Problem 1 by finding

Φ̂[2] and Φ̂[3] such that ‖g(s)−ĝ(s)‖H∞ < ε. We next clarify
the relation between the approximation error of Φ[l] and Φ̂[l],
and that of g(s) and ĝ(s). More specifically, we take the



A :=

⎡
⎣ E[3] +Λ[3]F[3] 0 Γ[3]dg(Ci)
Λ[3]F[3] + dg(Λ[2]i)G[3] dg(E[2]i +Λ[2]iF[2]i) Γ[2]dg(Ci)
Λ[3]F[3] + dg(Λ[2]i)G[3] dg(Λ[2]iF[2]i) + dg(Λ[1]i)G[2] A+ dg(Λ[1]iF[1]i)

⎤
⎦ ∈ R

3n×3n

Â :=

⎡
⎣ Ê[3] + Λ̂[3,3]F̂[3] 0 Γ̂[3]dg(Ci)

Λ̂[2,3]F̂[3] + dg(Λ̂[2,2]i)Ĝ[3] dg(Ê[2]i + Λ̂[2,2]iF̂[2]i) Γ̂[2]dg(Ci)

Λ[3]F̂[3] + dg(Λ[2]i)Ĝ[3] dg(Λ[2]iF[2]i) + dg(Λ[1]i)Ĝ[2] A+ dg(Λ[1]iF[1]i)

⎤
⎦ ∈ R

(n̂[3]+n̂[2]+n)×(n̂[3]+n̂[2]+n)

B :=

⎡
⎣ Γ[3]dg(Ci)

Γ[2]dg(Ci)
Γ[1]dg(Ci)

⎤
⎦ ∈ R

3n×n, B̂ :=

⎡
⎣ Γ̂[3]dg(Ci)

Γ̂[2]dg(Ci)
Γ[1]dg(Ci)

⎤
⎦ ∈ R

(n̂[3]+n̂[2]+n)×n (17)

orthogonal projection [12], i.e., the parameters in (13) are
taken as

Ê[l]i = P[l]iE[l]iP
T
[l]i, F̂[l]i = F[l]iP

T
[l]i

Γ̂[l] = dg(P[l]i)Γ[l], Λ̂[l,l]i = P[l]iΛ[l]i

Ĝ[l] = −dg(F[l−1]i)dg(P
T
[l]i), Λ̂[2,3] = dg(P[2]i)Λ[3]

(19)
for l ∈ {2, 3} where P[l]i ∈ R

n̂[l]i×n[l]i satisfies

P[l]iP
T
[l]i = In̂[l]i

. (20)

In this formulation, Problem 1 coincides with the problem
to find P[l]i in (19) such that ‖g(s)− ĝ(s)‖H∞ < ε, whose
solution is given by the following theorem:

Theorem 2: Consider Problem 1 and {Φ̂[l]} in (13), (15)
and (19). Define

σ[l,k] := ‖(I − dg(PT
[l]iP[l]i))

×(sI − dg(A[k]i +B[k]iF[k]i))
−1dg(J[k]i)dg(Ci)‖H∞

(21)
for each k ≥ l and l ∈ {2, 3}. Let A be given by (17) and

P := dg(P[3], dg(P[2]i), In) (22)

If P[l]i such that PAPT is stable, then

‖g(s)− ĝ(s)‖H∞ ≤ σμ (23)

where g(s) and ĝ(s) are defined in (16) and

σ := ((σ[2,3] + σ[3,3])(1 + γ[2]) + σ[2,2])(1 + γ[1])

μ := ‖[0, In](sI − PAPT)−1PA[I2n, 0]
T‖H∞

(24)

with γ[l] defined in (11).

Proof: Omit the proof due to page limitation.
Theorem 2 shows that the approximation error ‖g(s) −

ĝ(s)‖H∞ is bounded by σ[l,k] associated with the approx-
imation error of Φ[l] and Φ̂[l]. Thus, we can make the
approximation error small if we find P[l]i such that σ[l,k]

is sufficiently small and PAPT is stable.

B. Design Procedure for Low-dimensional Hierarchical Dis-
tributed Compensator

In this subsection, we provide a design procedure for
the low-dimensional hierarchical distributed compensators.
In general, it is difficult to find an orthogonal projection to
satisfy a criterion evaluated by the H∞-norm, such as (21).
Intuitively, we can expect that the H∞-norm of a transfer
matrix is small if the H2-norm of that is small (see [13]

for sufficient conditions). In view of this, we determine P[l]i

such that the H2-norm of the system in the left side of (21)
is small for a given n̂[l]i. Specific procedure is provided in
[14]. Furthermore, if an approximation error is sufficiently
small, then PAPT is expected to be stable. We summarize
the design procedure for {Φ̂[l]} as follows:

1) Give ε > 0.
2) For a given system Σ in (7) and a hierarchical structure

{N[l]} and {C[l]i}i∈N[l+1]
for l ∈ {0, 1, 2}, construct

{Φ[l]} in (8) and (9) having desirable γ[l] in (11).
3) Find P[l]i in (19) satisfying (20) and making σ[l,k] in

(21) small for a given n̂[l]i.
4) If ĝ(s) is unstable or ‖g(s) − ĝ(s)‖H∞ > ε, then take

a larger value of n̂[l]i and go to step 3).
5) Construct {Φ̂[l]} in (13), (15) and (19).

IV. NUMERICAL EXAMPLE

In this section, we show the efficiency of the proposed
method by a power network example from [9]: The power
network composed of N = 50 subsystems (areas) and
each subsystem consists of three generators and two loads.
Each generator and load are given as three- and two-
dimensional systems, respectively. Thus, each subsystem is
13-dimensional, i.e., ni = 13 for i ∈ N := {1, . . . , 50}, and
the whole power networked system is 650-dimensional, i.e.,
n = 650.

The interconnection structure among generators and loads
in each subsystem is given as a graph Laplacian called the
Wattz-Strogatz(WS) model [15]. Furthermore, one generator
in each subsystem connects to generators in the other sub-
systems, whose interconnection structure is given as a WS
model.

Furthermore, the elements of the admittance matrix com-
patible with the subsystem interconnections are randomly
chosen from [0.1, 0.5], and those compatible with intercon-
nection inside the subsystems are randomly chosen from the
interval [0.1, 1.0]. In what follows, we consider a situation
where the frequency of the power system suddenly varies. To
simulate this, we give nonzero initial values for the angular
velocity of the generators.

Next, we design a hierarchical distributed compensator
{Φ[l]} as follows: We take L = 3 and

|N[1]| = 10, |N[2]| = 2, |N[3]| = 1
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Fig. 3. Initial value responses of a power network model.

and take cluster sets C[l]i having the same number of
subsystems in each layer, i.e.,

|C[0]i| = 5, |C[1]i| = 5, |C[2]i| = 2

for i ∈ N[l]. Thus, we have n[1]i = 65, n[2]i = 325 and
n[3] = 650 for i ∈ N[l]. Furthermore, let m[1] = 25, m[2]

= 17 and m[3] = 13, which are the number of generators
having additional input ports compatible with B[l], and take
such generators randomly from 50 generators connecting
to subsystems. For each l ∈ {1, 2, 3}, we design F[l]i

minimizing γ[l] in (11) and construct Φ[l] by (8) and (9).
In Fig. 3, we depict the initial value responses of the

closed-loop system with a hierarchical distributed compen-
sator {Φ[l]} by the blue dotted lines. From this figure, we
see that the L2-induced norm performance of the closed-loop
system improves as that of the local closed-loop system (10)
improves. However, each compositional unit of the designed
compensator Φ[2] and Φ[3] is a 325- and 650-dimensional
system, respectively.

Next, we consider reducing those two compensators while
preserving a similar performance. Let Φ̂[l] as n̂[2]i = 200
and n̂[3] = 137, the resultant approximation error is ‖g(s)−
ĝ(s)‖H∞/‖g(s)‖H∞ = 0.017. In Fig. 3, we also plot
the initial value responses of the closed-loop system with
{Φ̂[l]} by the red solid lines. We can see from this figure
that the trajectories compatible with Φ̂[l] are close to those
compatible with Φ[l]. Furthermore, for each case (a)-(c), the
resultant value of supx0

(‖x(t)‖L2
/‖x(0)‖2) is 3568, 477 and

229, respectively. Therefore, we can see that the L2-induced
norm performance of the closed-loop system improves as
that of the performance of the local closed-loop system gets
better.

V. CONCLUSION

In this paper, towards distributed design of locally sta-
bilizing controllers, we have proposed a design method of
low-dimensional hierarchical distributed compensators for
large-scale networked linear systems. We have formulated
the problem of designing such compensators as a structured
controller reduction problem such that the approximation
error bound improves as the performance of local closed-
loop system improves. To solve this problem, we have shown
that the approximation error of the closed-loop system can

be evaluated by that of the system associated with the hier-
archical distributed compensator without locally stabilizing
controllers. On the basis of this result, we have derived the
relation between the approximation errors of the individual
hierarchical distributed compensators and the performance
degradation of the closed-loop system. Finally, the efficiency
of the proposed method has been demonstrated through a
numerical example of a power network.
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