
Improving Controllability and Plug-and-Play
Operation of Wind Farms using B2B Converters

Tomonori Sadamoto and Aranya Chakrabortty

Abstract—We show that a critical factor deciding the controlla-
bility of a doubly-fed induction generator (DFIG) in a wind power
system is the ratio of its leakage reactance to resistance. If this
ratio is high then the DFIG has two uncontrollable slow resonant
modes. In that situation any type of control action for attenuating
disturbances inside the wind farm becomes impossible. In order
to prevent this uncontrollability, we propose to add a back-to-
back (B2B) converter in the stator line of the DFIG. This new
converter has two benefits - first, it improves the controllability of
the wind farm significantly, and second, its signal-flow diagram
reveals a cascade structure where the grid is shown to impact the
DFIG dynamics, but not vice versa. The cascade structure also
enables one to design controllers for regulating the DFIG currents
and its DC-link voltages in a completely modular and plug-and-
play fashion. We illustrate various implementation aspects of this
control mechanisms via numerical simulations of the IEEE 68-
bus power system model with one wind farm.

Index Terms—DFIG, Stability, Controllability, Plug-and-Play
Control, Wind Power

I. INTRODUCTION

A vast amount of research has been done over the past
two decades on the topic of wind energy integration [1].
Starting from detailed modeling of wind turbines and doubly-
fed induction generators (DFIG) [2], series of papers have been
written on transient stability [3], small-signal stability [4], and
control [5], [6] of wind power systems. These control designs
are based on ideal models of DFIGs whose model parameters
are chosen to ensure strong controllability.

In reality, however, the choice of stator impedances and ro-
tor impedances in a DFIG often results in poor controllability,
making it very difficult for the wind farm to impart desired
amounts of damping control actions on the power flows on the
grid side. Controllability issues for wind power regulation have
been reported in several venues such as [7], [8] but only either
in the context of steady-state power dispatch or mechanical
control of turbine components. To the best of our knowledge,
no paper has so far reported the influence of model parameters
on the controllability of a DFIG and an wind farm, and in turn,
the controllability of an entire wind farm.

In this paper, we show that a critical factor deciding
controllability of a DFIG is the ratio of its leakage reactance
to resistance. If this ratio is high then the first two slow
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resonant modes become uncontrollable while the two fast
modes become slow but controllable. In this case, any type
of control, whether it be for damping, frequency regulation,
or disturbance attenuation, becomes very difficult. To resolve
this uncontrollability issue, we propose to add a back-to-back
(B2B) converter in the stator line of the DFIG. This new
converter is shown to have two benefits - first, it improves
the controllability of the wind farm significantly, and second,
its signal-flow diagram reveals a cascade structure where the
grid is shown to impact the DFIG dynamics, but the DFIG
states do not feedback to the grid. Thus, the grid becomes
insensitive and resilient to any disturbance inside the wind
farm. Moreover, any controller meant to regulate the DFIG
currents and the DC-link voltage can now be designed in
a completely modular and plug-and-play (PnP) fashion by
exploiting this cascade property. This PnP property enables us
to retune/redesign the controllers without taking into account
the dynamics of the rest of the grid, while theoretically guaran-
teeing the entire system stability. This property is especially
useful since with rapidly increasing number of wind farms
availability of accurate power system models is becoming
difficult, due to which power system operators are inclining
towards PnP controllers that can be designed independently
from the rest of the grid. It also preserves grid stability
whenever a new wind farm is added without requiring any
retuning of the existing control gains. PnP control of power-
electronic converters has been reported in recent papers such
as [9], [10] for the control of microgrids, and has been
experimentally shown for B2B converters in papers such as
[11]. However, the use of PnP property for providing resilience
to the grid against parametric resonance of wind farms, has not
been reported yet. Our design provides a theoretical bridge to
fulfill this gap. We illustrate various implementation aspects of
the controller via numerical simulations using the IEEE 68-bus
model with one wind farm.

The rest of this paper is organized as follows. In Section
II, we analyze the stability and controllability of a DFIG. In
Section III, we numerically show how lack of controllability
limits the control performance of an entire wind farm. In
Section IV, we propose to add a B2B converter to the
stator line of the DFIG. In Section IV-B, we investigate the
effectiveness of the proposed approach using the IEEE 68-bus
power system with a wind farm. Section V shows concluding
remarks.

Notation: We denote the imaginary unit by j :=
√−1. All

variables with superscript � denote setpoints (e.g.,ψ�ds is the
setpoint reference for ψds). The variables used in this paper
are in per unit unless otherwise stated. The nonlinear system
ẋ = f(x, u), where u is input, is said to be stable if there



exists an equilibrium (x�, u�) such that x(t) under u = u�

asymptotically converges to x� as t→ ∞.

II. STABILITY AND CONTROLLABILITY ANALYSIS OF

DFIG

The dynamics of the DFIG plays a central role in the
controllability of wind farms. We, therefore, first recall the
state-space representation of a standard and widely accepted
DFIG model [2], [11], [12]. The dynamics of its stator and
rotor flux linkages, are expressed in a rotating d-q reference
frame, as

ΣDFIG : ψ̇ = Aψ(ωh)ψ +Bψrvr +Bψsvs (1)

where ψ := [ψdr, ψqr, ψds, ψqs]
T, vr := [vdr, vqr]

T, vs :=
[vds, vqs]

T and

Aψ(ωh) :=

⎡
⎢⎢⎣

− rrxs

β 1− ωh
rrxm

β 0

ωh − 1 − rrxs

β 0 rrxm

β
rsxm

β 0 − rsxr

β 1

0 rsxm

β −1 − rsxr

β

⎤
⎥⎥⎦

Bψr :=

[
1 0 0 0
0 1 0 0

]T
, Bψs =

[
0 0 1 0
0 0 0 1

]T
(2)

with

xs := xm + xls, xr := xm + xlr, β := xsxr − x2m. (3)

In (1)-(3), ωh is the rotor speed, xm is the magnetizing
reactance, xls and xlr are the leakage reactance of the stator
and rotor, rs and rr are the resistance of the stator and rotor.
Subscripts d, q, s, and r respectively denote d-axis, q-axis,
stator and rotor variables. For example, ψdr is the d-axis rotor
flux linkage, and vqs is the q-axis stator voltage. Papers such as
[2] show that xls ≈ xlr and rs ≈ rr. Based on this observation,
to simplify analysis in the following derivation we assume
that xls = xlr and rs = rr. This assumption is made only to
simplify calculations. Under the assumption, the DFIG model
linearized around ωh = 1 pu (synchronous speed), can be
written as

Σ̂DFIG :
˙̂
ψ = Âψψ̂ +Bψrv̂r +Bψsv̂s +Bωω̂h (4)

with

Âψ :=

⎡
⎢⎢⎣

− 1+δ
τ 0 1

τ 0
0 − 1+δ

τ 0 1
τ

1
τ 0 − 1+δ

τ 1
0 1

τ −1 − 1+δ
τ

⎤
⎥⎥⎦ , Bω :=

⎡
⎢⎣

−1
1
0
0

⎤
⎥⎦

(5)
and Bψr and Bψs in (2), where δ and τ are defined as

δ :=

(
xls + xlr

2

)
1

xm
, τ :=

(
2

rs + rr

)
β

xm
. (6)

The variables ψ̂, v̂r, v̂s, and ω̂h denote deviations from their
steady-state values. The following two findings follow from
the model (4)-(5):

1) δ-dependency: Note that the parameter δ appears in
only the diagonal elements of Âψ , and that the four diagonal
elements are identical. This implies that each element of ψ̂ is
driven by a self-feedback term that shifts the four eigenvalues
of Âψ uniformly to the left. However, since the leakage
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Fig. 1. Variation of the eigenvalues of Âψ in (5) with τ .

reactances xls and xlr are usually much smaller than the
magnetizing reactance xm, δ � 1, and thus the impact of this
self-feedback on the DFIG dynamics is not very dominant.

2) τ -dependency: The following two cases are considered.
• Case 1 (if τ � 1): For the following argument, we

define

ψ̂1A := [ψ̂dr − ψ̂ds, ψ̂qr − ψ̂qs]
T, ψ̂1B := [ψ̂dr + ψ̂ds, ψ̂qr + ψ̂qs]

T.

(7)
Let T be such that [ψ̂T

1A, ψ̂
T
1B]

T = T ψ̂. Then, it follows that

TÂψT
−1 =

⎡
⎢⎢⎣

− δ+2
τ

1
2 0 − 1

2

− 1
2 − δ+2

τ
1
2 0

0 − 1
2 − δ

τ
1
2

1
2 0 − 1

2 − δ
τ

⎤
⎥⎥⎦ . (8)

From the Gershgorin circle Theorem, two eigenvalues of
TÂψT

−1 lie in |λ + δ+2
τ | ≤ 1 and the other two lie in

|λ + 2
τ | ≤ 1. Since τ � 1, the first two are fast and their

associated state variables are ψ̂1A. Thus, ψ̂dr ≈ ψ̂ds and
ψ̂qr ≈ ψ̂qs, i.e, the behavior of ψ̂dr (resp. ψ̂qr) and ψ̂ds (resp.
ψ̂qs) will be similar.

• Case 2 (if τ � 1): The coupling between ψ̂dr and ψ̂ds (or
ψ̂qr and ψ̂qs) is weaker than that between ψ̂ds and ψ̂qs. Thus,
the dynamics of ψ̂dr (or ψ̂qr) evolve almost independently
from the other three fluxes, and this evolution will be stable
because of the self-feedback term. The open-loop system, on
the other hand, will have a resonance mode. This can be seen
easily from the 2 × 2 lower-right block of Âψ which has
eigenvalues −1+δ

τ ± j.
As a result of these two findings, the stability and control-

lability of the DFIG dynamics can be interpreted as follows.
1) Stability: Fig. 1 depicts the variation of these eigenval-

ues of Âψ in (5) by changing τ in the range of [0.01, 100] for
δ = 0.0243.

When τ � 1, participation factor analysis [13] of the DFIG
model (4)-(5) reveals that ψ̂dr − ψ̂ds and ψ̂qr − ψ̂qs exhibit
fast dynamics, while ψ̂dr + ψ̂ds and ψ̂qr + ψ̂qs exhibit slow
dynamics.

As the value of τ increases, the eigenvalue variation is
bifurcated at τ = 2. This corresponds to the situation when the
average of the two leakage reactances is close to that of the
leakage resistances. To see this, let us define xl := xls = xlr
and r := rs = rr. Then, the parameter τ can be equivalently
written as τ = (2 + δ)xl

r . Usually, δ ≈ 0 because the leakage
reactance is much smaller than the magnetizing reactance [11].
Thus, τ = 2 corresponds to xl ≈ r.

When τ � 1, Fig. 1 shows that the mode 2A) shows an
oscillatory behavior with frequency around 1 (rad/sec) while
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Fig. 2. Variation of the eigenvalues of Φ1 with τ

the mode 2B) shows slow convergent behavior. Participation
factor analysis reveals that each mode is associated with

ψ̂2A := [ψ̂ds, ψ̂qs]
T, ψ̂2B := [ψ̂dr, ψ̂qr]

T, (9)

respectively. The oscillatory behavior happens because the sta-
tor flux ψ̂2A has a resonance pole, while the slow convergence
happens because of weak self-feedback.

2) Controllability: Control actions in a DFIG are typically
applied by regulating the rotor voltage vr through a rotor-
side converter [11]. Therefore, in the following controllability
analysis we consider vr as the main control input. This covers
the case when ω̂h is the control input as both ω̂h and vr affect
ψ̂dr and ψ̂qr.

The controllability of the DFIG model (4)-(5) from v̂r can
be quantified by the eigenvalues of the controllability gramian
Φ1 :=

∫∞
0
eÂψtBψr(e

ÂψtBψr)
Tdt. Fig. 2 shows the variation

of the eigenvalues of this gramian with changes in τ . Note
that two eigenvalues are overlapped at all marks. When τ �
1, the state ψ̂1A in (7) is seen to be less controllable than
ψ̂1B because ψ̂1A converges to its steady-state very fast. When
τ � 1, the state ψ̂2A in (9) is less controllable than the rotor
flux. This is because the large value of τ makes the coupling
between the stator dynamics and the rotor dynamics driven by
the control input v̂r weak.

In summary, we can write the following observations about
the stability and controllability of the DFIG model. Note that
τ can be written as τ = (2 + δ)xl/r.

Case 1, when xl � r: The slow and resonant state ψ̂1A in
(7) is controllable. The other state ψ̂1B is less controllable, but
is fast. Thus, in terms of stabilization of the DFIG dynamics,
this case is not very problematic.

Case 2, when xl � r: The slow state ψ̂2B in (9) is
controllable. However, the state ψ̂2A is less controllable even
though the mode 2A) has a resonant pole. Thus, this case will
cause a problem for stabilization and transient performance of
the DFIG.

We end this section with a simulation result for the non-
ideal case when xls 	= xlr, rs 	= rr, ω�h 	= 1. For this we
assume the parameters of ΣDFIG in (1) to lie in the following
ranges: xm ∈ [177.6395, 217.6395], xls ∈ [2.62, 6.62], xlr ∈
[2.976, 6.976], rs ∈ [0.0440, 0.444], rr ∈ [0.0745, 0.4745].
The mean values of each range are the DFIG model parameters
provided in [2] rated at 100MVA. Let ω�h ∈ [0.9, 1.1]. Note
that the Jacobian of Aψ(ωh) at ω�h coincides with Aψ(ω

�
h).

We denote the eigenvalues of Aψ(ω�h) by λ2A, λ2B , and their
conjugates. Without loss of generality, the imaginary parts of
λ2A and λ2B are assumed to be non-negative. The ranges
of their values for 1000 combinations of linearization points
chosen from the respective parameter ranges, together with

Eigenvalues for 1000 trials Typical eigenvectors

Re(λ2A) ∈ [−0.067,−0.004]
Im(λ2A) ∈ [0.995, 1.000]

⎡
⎢⎣

−0.0068
−0.0001
0.0000
0.7071

⎤
⎥⎦+ j

⎡
⎢⎣

0.0001
0.0068
0.7071
0.0000

⎤
⎥⎦

Re(λ2B) ∈ [−0.082,−0.006]
Im(λ2B) ∈ [0, 0.1]

⎡
⎢⎣

0.0000
0.7068
0.0210
0.0004

⎤
⎥⎦+ j

⎡
⎢⎣

0.7068
0.0000
0.0004
0.0210

⎤
⎥⎦

TABLE I
THE RANGE OF THE EIGENVALUES OF Aψ(ω

�
h) FOR 1000 TRIALS AND

THE TYPICAL VALUES OF THEIR EIGENVECTORS.
Eigenvalues for 1000 trials Typical eigenvectors

σ2A,1 ∈ [0.0015, 0.0335]
σ2A,2 ∈ [0.0015, 0.0335]

⎡
⎢⎣

0.0296
−0.0011
−0.0024
0.9996

⎤
⎥⎦ ,

⎡
⎢⎣

0.0011
0.0296
−0.9996
−0.0024

⎤
⎥⎦

σ2B,1 ∈ [6.1926, 81.1249]
σ2B,2 ∈ [6.1926, 81.1249]

⎡
⎢⎣

0.9987
−0.0405
0.0000
−0.0296

⎤
⎥⎦ ,

⎡
⎢⎣

0.0405
0.9987
0.0296
0.0000

⎤
⎥⎦

TABLE II
THE RANGE OF THE EIGENVALUES OF Φ1 FOR 1000 TRIALS AND THE

TYPICAL VALUES OF THEIR EIGENVECTORS.

the associated eigenvectors are listed in Table I. Similarly, the
range of eigenvalues of the controllability gramian Φ1 and
their eigenvectors are listed in Table II, where the eigenvalues
are denoted as σ2A,i and σ2B,i for i ∈ {1, 2}. The results
show that the stability and controllability properties of the
DFIG under the non-ideal scenario follows the same trend
as enumerated in Case 1 and Case 2 above.

So far, we have analyzed the controllability of a DFIG as
an isolated component. Next we show how the stability and
controllability of a DFIG influences the stabilization of an
entire wind farm connected to the grid.

III. IMPACT OF DFIG RESONANCE AND

CONTROLLABILITY ON A WIND FARM

A wind farm consists of multiple wind generators. Using
standard practice [14], we consider the model of all the
generators to be the same, as a result of which the wind
farm is modeled as a single wind generator whose model is
identical to that of each generator, and the total injection power
is the sum of the power output of individual generators. The
aggregated model consists of a wind turbine, a DFIG, and a
back-to-back (B2B) converter. The B2B converter consists of
a rotor-side converter (RSC), a grid-side converter (GSC), and
their respective inner-loop and outer-loop controllers. Please
see [15] for the detail about the wind farm dynamics.

To illustrate the impact of resonance and controllability on
this wind farm model, we consider the farm to be connected
to an infinite bus through a purely reactive transmission line
with impedance x. From Kirchoff’s law, it follows that

Vd + jVq = V̄d + jV̄q − jx(id + jiq) (10)

where Vd + jVq is the wind bus voltage, V̄d + jV̄q is the
infinite bus voltage, and id + jiq is the net current injecting
from the wind farm. We simulate the dynamic performance
of this one-machine-infinite-bus power system in response to
a fault. Let x = 0.01 in (10), V̄d = 0.9934, V̄q = 0.1147,
and the number of wind generators inside the farm be 60.
The other model parameters are shown in [15]. We suppose
the system to be in an equilibrium for t < 0. At t = 0 a
fault happens, whose effect is modeled by an impulsive change
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respectively.

in the DFIG current from its equilibrium. The red solid and
dotted lines in Fig. 3(a) show the active and reactive power
injected by the wind farm to the grid. The respective lines in
Fig. 3(b) show the d-axis duty cycle of the RSC and the q-
axis duty cycle of the GSC. The responses shown in Fig. 3(a)
are oscillatory with a frequency around 1 (rad/sec) that arises
from the resonance mode of the DFIG. Clearly, the internal
controllers of both RSC and GSC fail to damp this oscillation.
To investigate whether a supplementary controller can fulfill
this goal, we consider controlling both the RSC and GSC.
Let the control input be denoted as u ∈ R

4 where its first
two elements are the additional signals to the d- and q-axis
duty cycles of RSC while the last two are those of the GSC.
A state feedback control u = K(x − x�) is applied to the
system, where x ∈ R

16 denotes the wind farm state, and K
is designed to minimize J =

∫∞
0
w‖ψ̂(t)‖2 + ‖u(t)‖2dt with

a scalar weight w, where ψ̂ is defined in (4). In Fig. 3(a)-
(b), blue lines show the case when the optimal controller with
w = 104 is used. By comparing the blue and red lines in
Fig. 3(a), it can be seen that the resonant oscillations in the
power outputs are still poorly damped. Furthermore, Fig. 3(b)
shows that the duty cycles under this optimal control are often
saturated because of the lack of controllability. Although these
simulations are based on an aggregated wind farm model, a
similar trend follows for non-aggregated wind farm consisting
of heterogeneous wind generators.

These results show that the uncontrollability of the reso-
nant mode significantly influences the wind farm dynamics.
Motivated by these observations, we next propose a way to
increase the controllability of the resonant modes.

IV. PROPOSED APPROACH

A. Benefits of Adding B2B Converter to Stator Line

To overcome the problem described above, we propose
to add a second B2B converter to the stator line of the
DFIG, as shown in Fig. 4(a). We refer to the AC/DC and
DC/AC converters as stator-side converter (SSC) and bus-side
converter (BSC), respectively. The model of the second B2B
converter is described in Table III. Two main advantages of
adding this second B2B converter are summarized as follows.

1) Improvement of Controllability: To show that (11)-(16)
improves the controllability of DFIG in (1), we impose the
following assumption:

Assumption 1: The duty cycles of the RSC, GSC, SSC, and
BSC are not saturated at any time t during the time of interest.

• BSC:

L′
G
ω̄
i̇′dG = −R′

Gi
′
dG + L′

Gi
′
qG + Vd − m′

dG
2
v′dc,

L′
G
ω̄
i̇′qG = −R′

Gi
′
qG − L′

Gi
′
dG + Vq − m′

qG

2
v′dc,

Ps + jQs = −γ(Vdi′dG + Vqi′qG)− jγ(Vqi′dG − Vdi′qG).

(11)

where i′dG and i′qG are the d- and q-axis current flowing from the grid side to
the BSC,m′

dG andm′
qG are the d- and q-axis duty cycles defined in (13), Vd

and Vq are the d- and q-axis bus voltage, v′dc is the dc-link voltage defined in
(16), Ps+jQs is the power injecting from the converter, ω̄ is the synchronous
speed (60Hz), L′

G and R′
G are the inductance and resistance of the converter,

and γ is the number of wind generators inside the farm.

• Outer-Loop controller of BSC:

ζ̇′◦G = K′
I,◦G(α′

◦ − α′�
◦ ), i′ref◦G = K′

P,◦G(α′
◦ − α′�

◦ ) + ζ′◦G (12)

for ◦ ∈ {d, q}, where α′
d := Ps, α′

q := Qs, ζ′◦G is the controller state,
i′ref◦G is the reference signal of i′◦G, K′

I,◦G and K′
P,◦G are the integral and

proportional gains of the controller.

• Inner-Loop controller of BSC:

τ ′
Gχ̇

′
◦G = i′ref◦G − i′◦G,

m′
◦G = sat

(
2

v′
dc

(
Ṽ ′
◦ −R′

Gχ
′
◦G − L′

G
ω̄τ′

G
(i′ref◦G − i′◦G) + u′

◦G

))
,

(13)
for ◦ ∈ {d, q} where Ṽ ′

d := Vd +L′
Gi

′
qG, Ṽ ′

q := Vq −L′
Gi

′
dG, χ′

◦G is the
controller state, i′◦G is defined in (11), i′ref◦G is in (12), v′dc is in (16), u′

◦G is the
control input, τ ′

G is the designed time constant of the BSC current dynamics,
and sat(·) is the saturation function whose output is restricted within [-1,1].

• SSC

vds =
m′

dR

2
v′dc, vqs =

m′
qR

2
v′dc, (14)

where m′
dR and m′

qR are defined in (15), v′dc is in (16).

• Inner-Loop controller of SSC:

χ̇′
◦R = κ′

I,◦R(i◦s − i�◦s),

m′
◦R = sat

(
2

v′
dc

(
κ′
P,◦R(i◦s − i�◦s) + χ′

◦R + u′
◦R

))

ids = 1

β
(xmψdr − xrψds), iqs =

1

β
(xmψqr + xrψqs)

(15)

for ◦ ∈ {d, q}, where χ′
◦R is the controller state, u′

◦R is the control input,
v′dc is in (16), ψ◦◦ is in (1), xm, xr and β are in (3), κ′

I,◦R and κ′
P,◦R are the

integral and proportional gains of the controller.

• DC-link:

C′
dc
ω̄
v̇′dc = 1

v′
dc

(
Vdi′dG + Vqi′qG + vdsids

+vqsiqs −R′
G(i′2dG + i′2qG)

)−G′
swv

′
dc,

(16)

where i′dG and i′qG are defined in (11), ids and iqs are in (15), vds and vqs are
in (1),C′

dc is the dc-link capacitance, andG′
sw is the conductance representing

the switching loss of the B2B converter.

TABLE III
THE DYNAMICS OF THE SECOND B2B CONVERTER.

Under this assumption, by substituting (15) into (14), we
have

v◦s = κ′P,◦R(i◦s − i�◦s) + χ′
◦R + u′◦R, ◦ ∈ {d, q}, (17)

which implies that vds and vqs can be directly controlled
by the inner-loop controller. It follows from (1) that vds
(or vqs) directly drives ψds (or ψqs), which is resonant and
less-controllable by the rotor voltage vdr (or vqr). Therefore,
we can see that the controllability of ψds and ψqs are im-
proved via vds and vqs. Let Φ1 and Φ2 be the controlla-
bility gramians associated with the pairs (Aψ(ω

�
h), Bψr) and

(Aψ(ω
�
h), [Bψr, Bψs]), respectively. The eigenvalues of these

two are
σ(Φ1) = {0.0122, 0.0122, 17.3210, 17.3210}
σ(Φ2) = {16.9537, 16.9537, 19.8516, 19.8516},

which shows that the SSC drastically improves the controlla-
bility of the DFIG.
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Fig. 4. (a) Physical structure of the wind farm when a second B2B converter is added to the stator line. (b) Signal-flow diagram of the power system with
the proposed wind farm as shown in (a). In the subfigure (b), idG and iqG are the current flowing from the grid to GSC, idr and iqr are the current flowing
from the rotor to RSC, T is the electro-mechanical torque used by the DFIG, χdR and χqR are the state of the inner-loop controller of RSC. The other
symbols are defined in Table III and (1). Furthermore, the external control inputs on the duty cycles are omitted for brevity.

2) Plug-and-Play Operation: The introduction of the B2B
also imparts a PnP property for controlling the entire wind
farm. This can be shown as follows. Fig. 4(b) shows the
signal flow diagram of the closed-loop system including both
the wind farm and the grid. Let Σ1, Σ2, and Σ3 denote the
subsystems as shown in the figure. The important property of
this closed-loop system is its cascade structure, where
p1) Σ1 affects Σ2 and Σ3, but not vice versa, and
p2) Σ2 affects Σ3, but not vice versa.
These two facts can be established as follows. By substituting
(13) into (11), the BSC dynamics can be rewritten as

L′
G

ω̄
i̇′◦G = R′

G(χ
′
◦G − i′◦G) +

L′
G

ω̄τ ′G
(i′ref◦G − i′◦G)− u′◦G (18)

for ◦ ∈ {d, q}. From (18), it follows that the signal flow be-
tween the BSC with its controllers and the DC-link dynamics
is a cascade where the former is upstream and the latter is
downstream, as shown in the figure. The same argument holds
for the three upstream components RSC, GSC, and SSC and
their respective downstream DC-links. Thus, p2) holds. Also,
note that the outer-loop controller of BSC in (12) and the DC-
link dynamics (16) are influenced by the grid dynamics via the
bus voltage [Vd, Vq]

T. Similarly, the controllers of GSC and
RSC, and the DC-link dynamics of the first B2B converter
are influenced by [Vd, Vq]

T; see [15] for the details. On the
other hand, the bus voltage is driven by the variation of the
net injected power, which is determined by the GSC and BSC.
Thus, p1) holds.

We next state a theorem to theoretically establish the PnP
property imparted by these two cascade structures. Let η1,
η2, and η3 denote the state of Σ1, Σ2 and Σ3 in Fig. 4(b),
respectively. Let η := [ηT1 , η

T
2 , η

T
3 ]

T. Furthermore, we suppose
that an equilibrium η� (or equivalently the triple {η�1 , η�2 , η�3})
is given by a standard power flow calculation.

Theorem 1: Let Assumption 1 hold. Suppose that Σ1 and
Σ3 are stable at η�1 and η�3 . Then, the following two statements
are true.

i) The interconnection of Σ1, Σ2, and Σ3 is stable at η� for
any quadruple {κ′I,dR, κ′I,qR, κ′P,dR, κ′P,qR} such that Σ2

at η�2 is stable, where κ′I,dR, κ′I,qR, κ′P,dR and κ′P,qR are
defined in (15).

ii) Let z denote a measurable signal from Σ2 and Σ3, i.e.,
z = h(η2, η3). Consider an output-feedback controller

K :

{
ζ̇ = r(ζ, z)
u = s(ζ, z)

, u := [u′dR, u
′
qR]

T (19)

such that s(ζ�, z�) = u�, and the interconnection of the
triple {Σ2,Σ3,K} is stable, where ζ is the state of K, u′dR
and u′qR are defined in (15). Then, the overall closed-loop
system {Σ1,Σ2,Σ3,K} is stable at [η�T, ζ�T]T.

Proof 1: Note that the choice of the controller gains
{κ′I,dR, κ′I,qR, κ′P,dR, κ′P,qR} does not change the equilibria of
Σ1, Σ2, and Σ3. Note that each of Σ1, Σ2, and Σ3 are stable
with respect to their setpoints. Using the result in [16] that
a cascade interconnection of multiple nonlinear systems is
stable if each system is stable, the claim i) follows. Also,
the controller (19) does not change the equilibria because
r(ζ�, z�) = 0 and s(ζ�, z�) = u�. Thus, owing to the cascade
structure of Σ1, Σ2, and Σ3, the claim ii) follows.

In this theorem, the claim i) implies that the inner-loop
controller of the SSC can be tuned independent of the dy-
namics of the rest of the system. The claim ii) implies that,
if needed, additional control mechanisms can also be added
to the components without any influence from the remaining
components. For example, one can design an LQR controller
by feeding back the stator current and the dc-link voltage, i.e.,
z := [ids, iqs, v

′
dc]

T for improving the damping performance
of Σ2 and Σ3. Typically, ids, iqs, and v′dc are measurable [11].
Furthermore, a similar claim follows for RSC also. Once the
tuning ensures that Σ2 is stable, there is no need to re-tune
these controllers even if the grid dynamics change drastically
over time. Therefore, adding the B2B converter to the stator
line enables one to manage the wind farm operation in a
completely modular and PnP fashion.

B. Numerical Demonstration

We close this section by numerically illustrating the advan-
tages of adding the proposed B2B converter to the stator line
of the DFIG. We consider the IEEE 68-bus power system [15]
with a single wind farm installed at Bus 22. The topology of
the model, tie-line parameters, and machine parameters can
be found in [13]. The physical parameters of the second B2B
converter (11)-(16) are as follows. L′

G = 63.35, R′
G = 0.05,

G′
sw = 1.19 × 10−5, C ′

dc = 44.87, K ′
I,dG = −0.01,

K ′
I,qG = 0.01, K ′

P,dG = −0.2, K ′
P,qG = 0.01, κ′I,dG = 0.01,

κ′I,qG = 0.01, and τ ′G = 0.1. In Fig. 5(a), the red lines show
the frequency deviation of all synchronous generators after
a fault in the DFIG model (the same fault was considered
in Section III). Due to the resonance mode of the DFIG,
sustained oscillations around 1 (rad/sec) appear in the fre-
quency deviations. On the other hand, when the second B2B
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Fig. 5. (a) Trajectories of frequency deviation of 16 synchronous generators. (b) Eigenvalue variation of the linearization of system Σ2 as increasing κ′P,dR
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converter is added to the stator line of the DFIG, the same
fault is seen to have absolutely no effect on the grid states,
as indicated by the blue lines. This decoupling property stems
from the justification of the cascade structure of the model.
The proposed strategy, therefore, provides complete resilience
to grid operation against faults and disturbances in the wind
farm. The wind farm owner, however, may still want to control
the transient response of Σ2 and Σ3. For this, we tune the
proportional gain of the inner-loop controller of the SSC in
(15). Fig. 5(b) shows the eigenvalues of the closed-loop model
of Σ2 linearized at its equilibrium following from the power
flow solution. One can see that the eigenvalue around 0± j1
(that corresponds to the resonance mode of the DFIG) moves
to the left as the proportional gain increases. This is because
the SSC controls the stator voltage, by which the resonance
mode appearing on the stator flux dynamics is now directly
regulated. Fig. 5(b) also shows that high values of the gain
excite another mode around −0.28 ± j0.5 when κ′◦R > 2.6.
Thus, from this analysis based on the model of Σ2 only, one
can expect that the control with κ′◦R = 2.6 shows better
damping performance than for κ′◦R = 5.0. To see this, we
calculate the transient response of the entire power system
for the above fault. Fig. 5(c) shows the trajectories of the
stator current. It can be seen that the controller with the
smaller gain damps the oscillations much better than that with
the higher gain. The fluctuations of the DC-link voltages are
also sufficiently suppressed. These results demonstrate that the
controller tuning can be easily done based on the local model
of the wind farm.

V. CONCLUSION

The main contribution of this paper was to reveal three
facts - first, DFIGs have resonant and uncontrollable modes
depending on the ratio of their leakage reactance to resistance;
second, adding a B2B converter in the stator line can be
an effective way to overcome this difficulty; and third, this
converter allows the closed-loop system including the grid
dynamics to have a cascade structure where the grid affects
the DFIG but not vice versa. We showed the effectiveness of
the proposed approach through the IEEE 68-bus model with
one wind farm. The proposed strategy can be an effective
way of ensuring resilience of the grid as more wind power
gets integrated over time. One drawback of the approach
is the cost of adding the second B2B converter. This cost,
however, is justified by return benefits as the B2B controller
will enable much higher penetration levels for wind than what
we have today without running into adverse issues caused
by resonance and transient instability [4]. Moreover, with the

development of solid-state technology [17], the cost of power-
electronic converters is envisioned to reduce significantly in
the foreseeable future. Therefore, we envision the proposed
technology to be a cost-effective solution for large-scale wind
integration.
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