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Abstract: With increased attention of renewable energy, a large number of photovoltaic (PV)
power generators are expected to be installed into power systems in Japan. In this situation,
we consider a problem to make an appropriate schedule on the following day based on the
prediction of demand and PV power generation. Since the PV/demand prediction includes non-
negligible uncertainty, we need to devise a method for the power supply scheduling explicitly
taking into account the prediction uncertainty. Towards a robust power supply scheduling
tolerating the prediction uncertainty, first, we introduce spatio-temporal aggregation and provide
a fundamental fact on it. Based on this, we show that the scheduling problem can be divided
into two subproblems that involve spatially and temporally aggregated variables, respectively.
Then, investigating that spatio-temporal aggregation has potential to reduce the influence of
the prediction uncertainty, we show that the feasibility of the scheduling problem is improved by
the spatio-temporal aggregation. Finally, we show the efficiency of the power supply scheduling
based on the spatio-temporal aggregation through a numerical simulation.
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1. INTRODUCTION

The reduction of greenhouse gases is recognized as a long-
term goal in the global society, e.g., declaration at the
G8 Toyako Summit in 2008 [1]. As an efficient solution
technology towards this global goal, the use of renewable
energy sources such as photovoltaic (PV) power generation
has been gathering attention. In Japan, a large number of
PV power generators are expected to be installed in the
near future [2],[3].

In the situation where a large number of PV power
generators are installed, we are required to manage a power
supply problem using traditional generators in conjunction
with PV power generators. More specifically, we need
to handle the following issues: a problem to make an
appropriate power supply schedule on the following day
in advance, and a problem to operate the power system
according to the power supply schedule while keeping real
time supply-demand balance.

In this paper, as a first step, we focus on the former prob-
lem. To make an optimal power supply schedule, we uti-
lize the prediction information of demand and PV power
generation. However, making a schedule based on the
PV/demand prediction is not necessarily straightforward.
This is because the prediction inevitably includes some
uncertainty. In particular, the PV/demand prediction in
a local area is more difficult, i.e., the prediction includes

possibly larger uncertainty, due to the unexpected behav-
ior of an individual demander and local climate change.
Thus, we need to explicitly take into account the large
prediction uncertainty to achieve a robust power supply
scheduling.

A method to reduce such large prediction uncertainty is
to aggregate the predicted value. For example, it is well
known that temporal aggregation reduces uncertainty; see
e.g.,[6]. In addition, spatial aggregation also reduces uncer-
tainty; see e.g. [7]. Combining these types of aggregation,
in this paper, we introduce spatio-temporal aggregation.

To develop a method to systematically determine a power
supply schedule, we show that the scheduling problem can
be divided into the following subproblems:

• a power generation problem to determine a generation
plan of total supply power to all demanders, and

• a power dispatch problem to dispatch the total supply
power to each demander.

Then, it will be shown that the former and latter problems
should be addressed by focusing on spatially and tempo-
rally aggregated quantities. This can be explained more
specifically as follows: In the former problem, even though
we need to keep supply-demand balance on a time scale of
few minutes, i.e., in a temporally high-resolution, we only
have to find total supply power for all demanders, i.e., a



quantity in a spatially low-resolution. On the other hand,
in the latter problem, the power dispatch schedule should
be given on a longer time scale, i.e., in a temporally lower-
resolution. This is because it is not realistic to impose a
power supply schedule on each demander, which possibly
behaves egotistically, every few minutes. Thus, the power
generation problem involves spatially aggregated quanti-
ties while the power dispatch problem involves temporally
aggregated quantities.

On the basis of this fact, we give a theoretical analysis to
show that the spatio-temporal aggregation has potential to
significantly reduce a negative influence of large prediction
uncertainty. Furthermore, we show that the feasibility of
an optimization problem for the power supply scheduling
is improved by the reduction of prediction uncertainty.
Finally, the efficiency of the power supply scheduling based
on the spatio-temporal aggregation is shown through an
illustrative numerical simulation.

The rest of this paper is structured as follows: In Section
2, we introduce spatio-temporal aggregation. In Section
3, we define a mathematical model for a scheduling prob-
lem. Then, deriving the spatially aggregated model, we
show that a scheduling problem can be divided into two
problems. Furthermore, we formulate the two problems as
stochastic optimization problems. In Section 4, we theo-
retically show that the spatio-temporal aggregation has
potential to significantly reduce a negative influence of
large prediction uncertainty. In Section 5, we validate the
efficiency of the power supply scheduling through a numer-
ical simulation. Finally, concluding remarks are provided
in Section 6.

Notation. In this paper, we denote the set of real
numbers by R, the set of natural numbers by N, the
n-dimensional unit matrix by In, the n-dimensional all-
ones vector by 1n, the positive (semi)definiteness of a
symmetric matrix M ∈ Rn×n by M ≻ On (M ≽ On),
the trace of a matrix M by tr(M), the block diagonal
matrix having n matrices M on its block diagonal by
diagn(M), the expectation of a stochastic variable x by
E[x], the probability of an event A by Pr(A). In addi-
tion, a normally distributed stochastic variable with mean
m ∈ Rn and covariance matrix Σ ≻ On is denoted
by x ∼ N (m,Σ) whose probability density function is

denoted by 1/
√
det(2πΣ)exp

(
−1

2 (x−m)TΣ−1(x−m)
)
.

Furthermore, the error function is defined by erf(x) :=
2√
π

∫ x

0
e−t2dt and the inverse error function is denoted

by erf−1, which satisfies that erf−1(erf(x)) = x. For no-
tational convenience, we represent a lifted variable over
t ∈ T := {0, . . . , T−1} by the subscript of T . For example,
the lifted variable of x(t) ∈ Rn is denoted as

xT := [(x(0))T, . . . , (x(T − 1))T]T ∈ RnT . (1)

2. INTRODUCTION OF SPATIO-TEMPORAL
AGGREGATION

First, we give a mathematical preliminary. Let

T := {0, . . . , T − 1} (2)

be the time horizon of interest with the time length T . In
this section, we consider an n-dimensional stochastic linear
system described by

x(t+ 1) = Ax(t) + u(t), t ∈ T (3)

with an initial value x(0) = x0. In addition, let u(t) be a
normally distributed variable given by

uT ∼ N (uT,Σ) . (4)

In this notation, we show the following fact:

Theorem 1. Let an n-dimensional system in (3) be given
with u in (4). Define

T̂ := {0, . . . , T̂ − 1}. (5)

Consider τ ∈ N satisfying

τ T̂ ∈ T. (6)

Let P ∈ Rn̂×n and A ∈ Rn̂×n̂ be given satisfying

PA = AP. (7)

Furthermore, consider a normally distributed variable û ∈
Rn̂ such that

pdf(û(t̂)) = pdf

(
τ−1∑
k=0

Aτ−kPu(k + τ t̂)

)
, ∀t̂ ∈ T̂. (8)

Then, the n̂-dimensional stochastic system

x̂(t̂+ 1) = Aτ x̂(t̂) + û(t̂), t̂ ∈ T̂, x̂(0) = Px0 (9)

satisfies

pdf(x̂(t̂)) = pdf(Px(τ t̂)), ∀t̂ ∈ T̂. (10)

（Proof） Define P := [P 0n̂×n(τ−1)] ∈ Rn̂×nτ where

0n×m ∈ Rn×m denotes the zero matrix. It suffices to show
that pdf

(
x̂T̂
)
= pdf

(
diagT̂ (P)xT

)
. Note that xT can be

rewritten as xT = Lx0 +MuT where

L :=


In
A
...

AT−1

 ∈ RnT×n, M :=


On

In On

A In On

...
. . .

. . .

AT−2 · · ·A In On

 ∈ RnT×nT .

Define Â := Aτ and Mij ∈ Rnτ×nτ by partitioning M into
nτ -by-nτ block matrices. By using (7), it follows that

PMij =

{
Âi−1W if i > j
0n̂×nτ otherwise

where W := [AτP Aτ−1P · · · AP ] ∈ Rn̂×nτ . Thus, we
have

diagT̂ (P)M = M̂diagT̂ (W), diagT̂ (P)L = L̂P

where

L̂ :=


In
Â
...

ÂT̂−1

 ∈ Rn̂T̂×n̂, M̂ :=


On̂

In̂ On̂

Â In̂ On̂

...
. . .

. . .

ÂT̂−2 · · · Â In̂ On̂

 ∈ Rn̂T̂×n̂T̂ .

Hence, pdf(diagT̂ (P)xT) = L̂Px0 + M̂pdf(diagT̂ (W)uT)
holds. In addition, (8) is rewritten as pdf(ûT̂) = pdf(diagT̂
(W)uT). Finally, by using the relation x̂T̂ = L̂Px0 + M̂ ûT̂
the claim follows. �
In this theorem, the equality (8) plays an important role
in the following discussion. We can rewrite (8) as

pdf(û(t̂)) = pdf

[Aτ Aτ−1 · · · A]

 Pu(τ t̂)
...

Pu(τ(t̂+ 1)− 1)




for t̂ ∈ T̂. This implies that the input u is

• spatially aggregated by P , and



• temporally aggregated during τ steps.

Then, the time scale becomes more sparse time scale.
Actually, τ represents a degree of temporal resolution.
This theorem shows that the probability density function
(PDF) of x̂ is identical to that of the spatially aggregated
X variable at every τ step as long as (7) and (8) hold.
In this sense, the system in (9) is a spatiotemporally
aggregated model of the system in (3).

3. PROBLEM FORMULATION

3.1 Mathematical Model for Supply-Demand Balance

In this paper, based on the prediction of demand and PV
power generation, we address an optimization problem to
make a one-day power supply plan. In this section, we first
introduce a mathematical model to formulate the optimal
scheduling problem. Let T in (2) be a finite time interval
of interest, and suppose that T satisfies

T − 1 = 24/κ

where κ [h] stands for a unit of the time step. Further-
more, let n be the number of demanders, and denote the
amount of power consumption and PV power generation
by p(t) ∈ Rn and q(t) ∈ Rn, respectively. Then, using
these quantities, we define the net amount of demand by

d(t) := p(t)− q(t). (11)

Note that, the net amount of demand of demanders not
having PV power generators is defined by giving the
corresponding entries of p in (11) as zero.
In this paper, we suppose that a large number of PV
power generators are installed. It is known that the amount
of PV power generation varies regionally and temporally,
depending on, e.g., local unpredictable climate condition.
Due to this, the prediction of PV power generation in-
evitably includes some uncertainty; e.g., see [4].Thus, we
need to make a power supply plan explicitly taking into ac-
count this prediction uncertainty of PV power generation.

We deal with the net amount of the predicted demand
as a stochastic variable. More specifically, we model the
demand prediction d as a normally distributed variable,
namely

dT ∼ N (dT,Σ) (12)

where d is given as in (11) and the variance Σ ≻ OnT ,
which is supposed to be large in the sense of its norm,
reflects the prediction uncertainty. In the rest of this paper,
we denote stochastic variables in the bold font, e.g., d.
We denote the supply power to demanders by v(t) ∈ Rn.
Furthermore, supposing that all demanders have some
storage batteries, we model the temporal variation of the
battery electricity x by

x(t+ 1) = x(t)− d(t) + v(t), t ∈ T (13)

with an initial value x(0) = x0 ∈ Rn. The deference
equation in (13) represents that the deviation between the
demand and the supply power is to be charged into each
battery. It should be noted that x is a stochastic variable
because d is modeled as a stochastic variable.

3.2 Fundamental Fact on Power Generation and Dispatch

First, we show the following fact, which plays an important
role in discussion below:

Corollary 1. Let the n-dimensional system in (13) be given
with d in (12). Consider a one-dimensional model

X(t+ 1) = X(t)−D(t) + V (t), t ∈ T (14)

with X(0) = 1T
nx0 where V ∈ R and D ∈ R is normally

distributed variable. If

pdf(D(t)) = pdf
(
1T
nd(t)

)
, ∀t ∈ T (15)

and

V (t) = 1T
nv(t), ∀t ∈ T, (16)

then

pdf (X(t)) = pdf
(
1T
nx(t)

)
, ∀t ∈ T. (17)

（Proof） In Theorem 1, by taking u(t) = v(t)−d(t), A =
In, τ = 1, n̂ = 1, P = 1T

n, the claim follows. �

It should be noted that we can take any P owing to A = In
in Theorem 1. Corollary 1 shows that the PDF of X is
identical to that of the total amount of battery electricity
1T
nx, as long as (15) and (16) hold. Clearly, we can see that

these variables are spatially aggregated by 1T
n.

This corollary also shows that the PDF of the total amount
of battery electricity is invariant with respect to any v such
that 1T

nv. Thus, we see that a problem to plan the power
supply can be divided into

• the problem to determine an appropriate total amount
of supply power, and

• the problem to dispatch the determined total supply
power to individual demander.

In what follows, we refer to the first one as power gen-
eration scheduling and the second one as power dispatch
scheduling.

3.3 Power Generation Scheduling

In this subsection, we give a mathematical formulation
of the power generation scheduling. First, we give a cost
function as the quadratic form

J(VT;XT) := E

[
1

2

[
XT
VT

]T
Q

[
XT
VT

]
+ hT

[
XT
VT

]]
. (18)

This quadratic cost function is reasonable in the sense that
the fuel cost function of generators is often approximated
by a quadratic function; see, e.g., [5]. Furthermore, the
term of XT in (18) is introduced to evaluate the cost of
some energy loss caused by the charge and discharge of
batteries, which can be represented by giving a quadratic
function of X(k+1)−X(k) with an appropriate matrix Q.
The weight parameters Q ≽ O2T and h ∈ R2T are given
so as to represent these costs.
Next, we define a constraint condition for the power
generation scheduling. The power generation plan should
comply with several physical limitations, e.g., the lower
and upper bound of the total battery electricity. Taking
into account the stochastic aspect of X and D, we define
chance constraints [8], composed of nc inequalities, as

C(VT;XT,DT) : Pr(Fi

[
XT
VT
DT

]
≤ bi) ≥ 1− ϵ, ∀i ∈ Nc (19)

where Nc := {1, . . . , nc} and ϵ ∈ (0, 1) denotes the
rate of violation. Furthermore, the coefficients F :=



[FT
1 , . . . F

T
nc
]T ∈ Rnc×3T , b := [b1, . . . , bnc ]

T ∈ Rnc are
given so as to involve necessary physical limitations. The
chance constraints C in (19) implies that the probability
satisfying the constraint must be grater than the rate of
1− ϵ. In this notation, we formulate the power generation
scheduling as follows:

Problem 1. Consider the systems in (13) and (14), and
suppose that (15) holds. Let Q ≽ O2T and h ∈ R2T be
given, and define the cost function J as in (18). Find

V ∗
T := argmin

VT∈RT

J(VT;XT) (20)

subject to the equality constraint in (14) and the chance
constraints C in (19) with given F ∈ Rnc×3T and b ∈ Rnc

and ϵ ∈ (0, 1).

3.4 Power Dispatch Scheduling

In this subsection, we give a mathematical formulation of
the power dispatch scheduling. To this end, we introduce
a sparse time scale T̂ as in (5) for which we suppose that
there exists some τ ∈ N such that (6).

In this time scale, we formulate a problem to dispatch the
total supply power V ∗

T in (20) to each demander while
complying with the constraint of

V ∗(τ t̂) + · · ·+ V ∗(τ(t̂+ 1)− 1) = 1T
nv̂(t̂) (21)

at each moment of t̂ ∈ T̂, where V ∗(t) denotes the tth
element of V ∗

T and v̂(t̂) ∈ Rn denotes the supply power
for n demanders. Solving the power dispatch scheduling,
we find the sparse temporal sequence of an optimal supply
power v̂(t̂) that minimizes an appropriate cost function.
Before mathematically formulating the power dispatch
scheduling, we show the following fact:

Corollary 2. Let the n-dimensional system in (13) be given
with d in (12). Consider an n-dimensional model

x̂(t̂+ 1) = x̂(t̂)− d̂(t̂) + v̂(t̂), t̂ ∈ T̂ (22)

with x̂(0) = x0 ∈ Rn where v̂ ∈ Rn and d̂ ∈ Rn is normally
distributed variable. If

pdf(d̂(t̂)) = pdf

(
τ−1∑
k=0

d(k + τ t̂)

)
, ∀t̂ ∈ T̂ (23)

and

v̂(t̂) =
τ−1∑
k=0

v(k + τ t̂), ∀t̂ ∈ T̂, (24)

then

pdf(x̂(t̂)) = pdf(x(τ t̂)), ∀t̂ ∈ T̂. (25)

（Proof） In Theorem 1, by taking u(t) = v(t)− d(t),
A = In, n̂ = n, P = In, the claim follows. �

Similarly to Corollary 1, Corollary 2 shows that x̂ in
(22) can capture the temporal variation of the battery
electricity x at every τ step, as long as (23) and (24) hold.

By using the variables in (22), similarly to (18), we define
a cost function as

Ĵ(v̂T̂; x̂T̂) := E

[
1

2

[
x̂T̂
v̂T̂

]T
Q̂

[
x̂T̂
v̂T̂

]
+ ĥT

[
x̂T̂
v̂T̂

]]
(26)

where Q̂ ≽ O2nT̂ and ĥ ∈ R2nT̂ are given so as to represent
the costs of power transmission loss and battery degrada-
tion.Furthermore, similarly to (19), chance constraints are
introduced as

Ĉ(v̂T̂; x̂T̂, d̂T̂) : Pr(F̂i

 x̂T̂
v̂T̂
d̂T̂

 ≤ b̂i) ≥ 1− ϵ̂, ∀i ∈ N̂c (27)

where N̂c := {1, . . . , n̂c}, F̂ := [F̂T
1 , . . . , F̂

T
n̂c
]T ∈ Rn̂c×3nT̂ ,

b̂ := [b̂1 . . . , b̂nc ]
T ∈ Rn̂c and ϵ̂ ∈ R are given so as

to comply with necessary physical limitations. In this
notation, the power dispatch scheduling is formulated as
follows:

Problem 2. Consider the systems in (13) and (22), and

suppose that (23) holds. Let Q̂ ≽ O2nT̂ and ĥ ∈ R2nT̂ be

given, and define the cost function Ĵ as in (26). Find

v̂∗T̂ := argmin
v̂T̂∈RnT̂

Ĵ(v̂T̂; x̂T̂) (28)

subject to the equality constraints in (21) and (22), and

the chance constraints Ĉ in (27) with given F̂ ∈ Rn̂c×3nT̂ ,

b̂ ∈ Rn̂c and ϵ̂ ≥ 0.

4. ANALYSIS OF SPATIO-TEMPORAL
AGGREGATION

4.1 Analysis of Spatial Aggregation

In this subsection, we investigate a relation between the
spatial aggregation and the power generation scheduling.
First, we provide the result to equivalently translate Prob-
lem 1 into a deterministic quadratic programming problem
as follows:

Theorem 2. Consider the power generation scheduling in
Problem 1. Define the one-dimensional model by

X(t+ 1) = X(t)−D(t) + V (t), t ∈ T (29)

with X(0) = 1T
nx0. If

D(t) = E[D(t)], ∀t ∈ T, (30)

then V ∗
T in (20) coincides with

V ∗
T = argmin

VT∈RT

(
1

2

[
XT
VT

]T
Q

[
XT
VT

]
+ hT

[
XT
VT

])
(31)

subject to the equality constraint in (29) and the inequality
constraint

F

[
XT
VT
DT

]
< b− s(Σ, ϵ) (32)

where the ith element of s ∈ Rnc is defined by

si(Σ, ϵ) :=
(
2KiWΣWTKT

i

)
erf−1(1− 2ϵ) (33)

with

Ki := FiT , W := diagT (1
T
n) ∈ RT×nT ,

T :=

[
M
0
IT

]
∈ R3T×T , M :=


0
1 0
...

. . .
1 · · · 1 0

 ∈ RT×T .
(34)

（Proof）We omit the proof due to the page limitation. �



Theorem 2 shows that Problem 1 can be equivalently
transformed into the deterministic quadratic programming
problem in (31) subject to (29) and (32). The deterministic
representation indicates that a larger variance Σ of d in
(12) makes the inequality constraint in (32) tighter. This
is confirmed by the fact that s is a monotonic function
with respect to the norm of Σ.

Note that the spatially aggregated variablesDT in (15) sat-
isfies DT ∼ N (WdT,WΣWT). This spatially aggregated
covariance matrix ofWΣWT appears in s. To see the effect
of this spatial aggregation to Σ by W more explicitly, we
derive the bound of the norm of s as follows:

Theorem 3. Consider the power generation scheduling in
Problem 1. If ϵ ∈ (0, 0.5), then

si(Σ, ϵ) > 0, ∀i ∈ Nc (35)

where si is defined in (33). Moreover, if Σ is diagonal, then

∥s(Σ, ϵ)∥ ≤
√
2erf−1(1− 2ϵ)∥FT ∥2tr

1
2 (Σ) (36)

where s := [s1, . . . , snc ]
T.

（Proof）We omit the proof due to the page limitation. �

Note that the equality[
XT
VT
DT

]
= diag(W,W,W )

[
xT
vT
dT

]
follows from the definition of the spatial aggregation.
This implies that the magnitude of [XT

T V T
T DT

T ]
T in (32)

becomes necessarily larger due to the summation by W in
(34). In view of this, we evaluate the norm of s by scaling
it as

∥s(Σ, ϵ)∥
∥W∥2

≤
√
2√
n
erf−1(1− 2ϵ)∥FT ∥2tr

1
2 (Σ) (37)

which implies that the inequality constraint in (32) can be
relaxed by the spatial aggregation. In conclusion, we see
that the feasibility of Problem 1 increases by the spatial
aggregation.

4.2 Analysis of Temporal Aggregation

In this subsection, we investigate a relation between the
temporal aggregation and the power dispatch scheduling.

Owing to (23), we see that d̂T̂ ∼ N (dT̂, Σ̂) holds for

d̂T̂ := ŴdT, Σ̂ := ŴΣŴT (38)

where

Ŵ := diagT̂ ([In, . . . , In]) ∈ RnT̂×nT . (39)

Considering

x̂(t̂+ 1) = x̂(t̂)− d̂(t̂) + v̂(t̂), t̂ ∈ T̂ (40)

with x̂(0) = x0, similarly to Theorem 2, we can equiva-

lently rewrite the constraints Ĉ in (27) as

F̂

 x̂T
v̂T
d̂T

 < b̂− ŝ(Σ, ϵ̂) (41)

where the ith element of ŝ ∈ Rn̂c is defined by

ŝi(Σ, ϵ̂) :=
(
2K̂iŴΣŴTK̂T

i

) 1
2

erf−1(1− 2ϵ̂) (42)

with K̂i := F̂iT̂ and

T̂ :=

 M̂
0
IT̂

 ∈ R3nT̂×T̂ , M̂ :=


On

In On

...
. . .

In · · · In On

 ∈ RnT̂×nT̂ . (43)

In this notation, similarly to the Theorem 3, we obtain the
following result for the temporal aggregation:
Theorem 4. Consider the power dispatch scheduling in
Problem 2. If ϵ̂ ∈ (0, 0.5) and Σ is diagonal, then

∥ŝ(Σ, ϵ̂)∥
∥Ŵ∥2

≤
√
2√
τ
erf−1(1− 2ϵ̂)∥F̂ T̂ ∥2tr

1
2 (Σ) (44)

where ŝ := [ŝ1, . . . , ŝn̂c
]T and ŝi is defined in (42).

（Proof）We omit the proof due to the page limitation. �

Theorem 4 implies that the inequality constraint in (42)
can be relaxed by the temporal aggregation. Thus, taking
a sufficiently large temporal resolution τ , we can improve
the feasibility of Problem 2.

5. NUMERICAL SIMULATION

5.1 Power Generation Scheduling

In this section, we validate the efficiency of the power
supply scheduling through a numerical simulation. We
suppose n = 100 demanders having storage batteries. To
obtain d in (12), we use an actual data of the power
consumption and PV power generation in a local area
of Japan. More specifically, supposing that 50 demanders
have the equipment of PV power generation, we use actual
50 data of a day on July in 2009. The ratio of PV
power generator owners corresponds to a target amount
of PV power generators by 2030 in Japan. Furthermore,
we suppose that Σ in (12) is diagonal and determine its
diagonal entries as complying with the actual data.

In what follows, we first schedule the total power genera-
tion, namely, we find V ∗

T in (14). Using the notation of

∥y∥2a,b :=
1

2
ay2 + by

for a scalar function y, we give a fuel cost function
of generators as the quadratic form of ∥V (t)∥2r,s. The
parameters r = 11 and s = 46 are given according to
the coefficients of the fuel cost function shown in [1].
Furthermore, defining the charge and discharge power of
batteries by

∆X(t) := X(t+ 1)−X(t), t ∈ T, (45)

we give a cost function for battery degradation as the
quadratic form of ∥∆X(t)∥p,q, where the parameters p =
14 and q = −22 are determined based on a standard
cost and life of storage batteries. Then, we define the cost
function for the power generation scheduling by

E

[
T−1∑
t=0

(
∥V (t)∥2r,s + ∥∆X(t)∥2p,q

)
+ ∥X(T )−X(0)∥2w,z

]
.(46)

Towards the sustainable use of batteries, the last term of
(46) is introduced to make the battery electricity X(T ) at
the termination time close to its initial value X(0). The
parameters w = 100 and z = 0 are determined so that the
last term makes sense. By substituting (45) into (46), the
cost function can be written in the form of J in (18).
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Fig. 1. Optimal power generation plan V ∗
T
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Fig. 2. Optimal supply power v̂∗
T̂ for τ = 24
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Fig. 3. ∆x∗
i in (51) for τ = 24

Next, we define chance constraints for the power gener-
ation scheduling. The chance constraints C in (19) are
defined with ϵ = 1× 10−4 and

F =

 IT −IT
−IT IT

IT
−IT

 ∈ R4T×3T , b =

 ∆Xmax1T

−∆Xmin1T

Xmax1T

−Xmin1T

 ∈ R4T

where ∆Xmin and ∆Xmax denote the lower and upper
bounds of those of ∆X, and Xmin and Xmax denote those
of X. In addition, we impose inequality constraints on the
deterministic variable V as

Vmin1T ≤ VT ≤ Vmax1T . (47)

These constants are given as follows: Supposing that all
demanders have storage batteries with an average capacity
of 10 [kWh], we take Xmax = 1000 [kWh], Xmin = 0 [kWh]
with the initial battery electricity of X(0) = 500 [kWh].
In addition, we suppose that the total amount of supply
power in 2030 of Tokyo area peaks at 35[GW] and the
number of demanders in the area is 20 million. Thus, we
take Vmax which is the maximal total amount of power
to 100 demanders, as Vmax = 35/20× 100 = 175 [kW]. In
addition, we take Vmin = 0 [kW] because V should be non-
negative. Furthermore, we suppose that the total amount
of PV generated power in the above situation peaks at
15[GW] and the number of demanders having PV power
generators is 10 million. Thus, we take ∆Xmax, which is a
maximal total amount of charge and discharge power per
100 demanders, as ∆Xmax = 150 [kW]. In addition, we
take ∆Xmin = −150 [kW] in a similar way.

In the setting above, we find the optimal solution V ∗
T

by solving the quadratic programming problem in (31)
subject to (32), where we construct D such that (15).
In Fig. 1, we plot the obtained trajectory of V ∗

T , in
conjunction with the lower bound in (47). This figure
shows that V ∗

T satisfies the inequality constraints in (47).
Furthermore, the values of V ∗(t) around t = 12 are small.
This is owing to the fact that a large amount of PV power
generation is available in the daytime.

5.2 Power Dispatch Scheduling

In this subsection, we solve the power dispatch schedul-
ing, namely we find v̂∗T̂ in (28). Defining the charge and

discharge power of storage batteries by

∆x̂(t̂) := x̂(t̂+ 1)− x̂(t̂), t̂ ∈ T̂, (48)

we impose the chance constraints in (41) on ∆x̂ and x̂
with ϵ̂ = 1× 10−4 and

F̂ =

 InT̂ −InT̂
−InT̂ InT̂

InT̂
−InT̂

 , b̂ =

 ∆xmax1nT̂
−∆xmin1nT̂
xmax1nT̂
−xmin1nT̂



where ∆xmax and ∆xmin denote the upper and lower
bounds of ∆x̂, and xmax and xmin denote those of x̂.
The constant xmax is given as dividing ∆Xmax by n =
100, i.e., ∆xmax = ∆Xmax/100. The other bounds are
given in a similar way. In addition, we impose inequality
constraints on the deterministic variable v̂ as vmin1nT̂ ≤
v̂T̂ ≤ vmax1nT̂ where vmax = Vmax/100 and vmin = 0.
Furthermore, we use the cost function

E

T̂−1∑
t=0

∥∆x̂(t)∥2p,q + ∥x̂(T̂ )− x̂(0)∥2w,z

, (49)

which implies that we take into account the degradation
cost of batteries by the first term with p = 14 and q = −22
and we make x̂(T̂ ) close to x̂(0) by the second term with
w = 100 and z = 0. Furthermore, we give the initial
amount of battery electricity as x(0) = X(0)/100 ∈ R100.

First, we show a simulation result in the case where the
degree of temporal resolution is τ = 24. This implies the
time interval of the time scale is 4 [h] and T̂ = 6. In Fig. 2,
we plot the resultant supply power schedules to individual
demanders. In this figure, the blue and red lines depict the
supply power to demanders with and without PV power
generators, respectively, and the purple line depicts the
lower bound of v̂. Note that v̂∗(t̂) at time t̂ ∈ {0, 4, . . . , 20}
is depicted as the markers because its time scale is more
sparse than the original one. This implies that the amount
of the supply power to demanders without PV generators
is larger than that to demanders with PV generators.

In Fig. 3, for i ∈ {1, . . . , 100}, we plot ∆x̂i denoting the
ith element of ∆x̂ in conjunction with some constraints.
The blue and red lines indicate ∆x̂i corresponding to de-
manders having PV power generators and not having ones,
respectively. Then, the color indication for constraints is as
follows: The purple lines indicate the ∆xmax and ∆xmin.
In addition, the yellow lines depict the lower and upper
bound of ∆x̂(t̂) := x̂(t̂+ 1)− x̂(t̂) in (41), namely

∆xmin1nT̂ + ŝI(Σ, ϵ̂) ≤ ∆x̂T̂ ≤ ∆xmax1nT̂ − ŝI(Σ, ϵ̂)

where ŝI denotes a set of elements of ŝ coresponding to
∆x, namely, the vector composed of the first to nT̂ th
entries of ŝ. Fig. 3 shows that the obtained solution sat-
isfies the given constraints defined by ∆xmax and ∆xmin.
In addition, ∆x(t̂) depicted by blue lines is positive in
daytime. This implies that the electricity generated by PV
is charged in the daytime.

Next, we show the validity of the resultant solution v̂∗

for the power dispatch scheduling by comparing it with
V ∗. Note that the time scale of v̂∗(t̂) is more sparse than
that of V ∗(t). In view of this, we suppose that ṽ(t), which
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Ṽ for τ = 24 and τ = 12

denotes an upsampled version of v̂∗(t̂), is constructed by
the interpolation of

ṽ(τ t̂+ k) := ṽ(τ t̂) + k∆v, t̂ ∈ T̂, k ∈ {0, · · · , τ − 1}(50)

with a given value of ṽ(τ t̂), where ∆v ∈ Rn denotes an
unit of the increment. By definition of (24), v̂∗i (t̂) and vi(t)
denoting the ith elements of v̂∗(t̂) and v(t) should satisfy

vi(τ t̂) + · · ·+ vi(τ(t̂+ 1)− 1) = v̂∗i (t̂). (51)

Thus, ∆v should be determined so as to satisfy (51).
Finally, summing up ṽi for i ∈ {1, . . . , 100}, we have the

total amount of power Ṽ as Ṽ (t) :=
∑n

i=1 ṽ(t) for each

t ∈ T. In Fig. 4, we plot V ∗ and Ṽ by the blue and red
lines, respectively.From this figure, we can see that some
discrepancy between V ∗ and Ṽ is caused due to the fact
that the degree of a temporal resolution τ = 24 is low.

Next, taking τ = 12 and τ = 6, we carry out the same
procedure above. The time intervals of the corresponding
scheduling problems are 2 [h] and 1 [h], respectively.
As a consequence, we cannot obtain a solution in the
case of τ = 6 due to the infeasibility of the resultant
optimization problem, while we obtain a solution in the
case of τ = 12. To see the reason of infeasibility, in Fig. 5,
we plot the constraints in those cases by the solid and
the dotted green lines in conjunction with the inequality
constraints denoted by purple lines. For reference, we plot
the constraints in the case of τ = 24 by the yellow lines. In
addition, we plot the obtained ∆xi in the case of τ = 12
by the blue and red lines. From this figure, we can see
that the constraints become tighter as taking a smaller τ .
Thus, we see that the infeasibility for τ = 6 is caused by
the tight constraints.

Furthermore, in Fig. 6, we plot Ṽ in case of τ = 12 by the
yellow line. For reference, we plot Ṽ in the case of τ = 24
by the dotted red line. This figure shows that Ṽ in the case
of τ = 12 is closer to V than that in the case of τ = 24. This
implies that the total amount of dispatched power in the
case of the lower degree of temporal resolution becomes
closer to the generation power scheduled in section 5.1.
Therefore, we can see that there is a trade-off relation
between the degree of temporal resolution and feasibility of
the scheduling problem. It should be finally remarked that
the simple interpolation in (50) is used to show the validity
of the power dispatch scheduling based on the temporal
aggregation. To employ more realistic interpolation is
currently under investigation.

6. CONCLUSION

In this paper, we have addressed a problem of power
supply scheduling, with the consideration of traditional

generators as well as a large number of PV generators.
To achieve power supply scheduling tolerating a predic-
tion uncertainty of PV power generation and demand, we
have used spatio-temporal aggregation. By dividing the
scheduling problem into subproblems to generate the total
amount of power supply and to dispatch it to individual
demanders, we have analyzed a positive relationship be-
tween spatio-temporal aggregation and the power supply
scheduling problem. More specifically, by this analysis, we
have theoretically shown that the spatio-temporal aggre-
gation has potential to significantly reduce the uncertainty
of PV/demand prediction. Finally, we have validated the
efficiency of the power supply scheduling based on the
spatio-temporal aggregation through a numerical simula-
tion.
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