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Abstract— In this paper, we propose a hierarchical dis-
tributed design method of stabilizing controllers for an evolving
network system where a part of the network system changes as
installing a new dynamical system, which is called an evolving
component. First, supposing that the dimension of the evolving
network system is low enough to make the existing controller
design methods applicable, we propose a design method of
a stabilizing controller such that the whole evolving network
system is kept to be stable as long as the evolving component
does not spoil the local stability of the part of the evolving
network system. Next, on the basis of this controller design, we
propose a hierarchical distributed design method of stabilizing
controllers for a large-scale evolving network system. The
main idea of the hierarchical distributed design is to apply
the proposed distributed design to evolving components that
are hierarchically decomposed, thereby realizing a scalable
handling of large-scale evolving network systems. Finally, we
demonstrate the proposed method through an example of
evolving power systems.

I. INTRODUCTION

Recently, systems of interest to control communities be-
come more complex and larger in scale. Examples of such
complex and large-scale systems include a power network
system where, towards the reduction in greenhouse gas
emission, the use of renewable energy sources has been
gathering attention as an efficient solution technology. In
particular, Japanese government sets a goal to install photo-
voltaic (PV) generators into the houses of consumers by 2030
such that the total amount of PV power generation covers
approximately 50% of the peak power consumption [1], [2].
As examplified by this, real world networks are generally
evolving, depending on various situations and objectives.

In general, even if the system variation (system evolution)
occurs at a part of control systems, the existing control design
methods, e.g., [3], force us the redesign of controllers with
consideration on the entire closed-loop system. However,
such redesign of controllers is not practical, especially in the
case that the evolving network system gets larger in scale.

To discuss this difficulty, a notion of distributed design
is introduced in [4] where a performance limitation of
controllers designed in a distributed manner is discussed by
confining the class of systems to handle. Furthermore, in [5],
a distributed design method in terms of the L1-induced norm
has been developed for positive linear systems. However,
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Fig. 1. Evolving network system where three evolving components are
installed into a basement network composed of three subsystems

because this method fully utilizes a special property of
positive systems, it is difficult to straightforwardly generalize
these methods to a broader class of systems.

On the other hand, in [6], [7], the authors have proposed
a distributed design method of stabilizing controllers for
general linear network systems. This method guarantees that
the whole network system is stable for all sets of locally
stabilizing controllers where each set of the controllers
stabilizes each compositional subsystem disconnected in the
network system.

In this paper, we interpret a set of locally stabilizing
controllers considered in [6], [7] as a set of systems evolving
and consider stabilization of the whole evolving network sys-
tems. In this paper, we deal with evolving network systems
shown in Fig. 1, where the system evolves by connection of
several systems to a network system unchanged. Throughout
this paper, we call the invariant network system basement
network and the system connecting to the invariant system
evolving components.

Towards scalable handling of large-scale evolving net-
works, we first develop a design method of a stabilizing
controller for an evolving network, where the dimension of
the basement network and individual evolving components
are supposed to be low enough to make the existing control
synthesis methods applicable. This stabilizing controller has
the ability to guarantee that the whole evolving network
system is kept to be stable as long as the evolving component
does not spoil a kind of local stability, defined for a part of
the evolving network system. In this development, we use the
aforementioned design method in [6], [7] as a fundamental
tool for distributed design of a stabilizing controller for an
evolving network.

Next, we consider a situation where a number of com-
ponents are installed into the basement network, i.e., the



dimension of an evolving component is too high to design a
stabilizing controller by the existing control synthesis meth-
ods. To realize scalable handling of such large-scale evolv-
ing network systems, we propose a hierarchical distributed
design method of stabilizing controllers. The main idea of
the hierarchical distributed design is to apply the proposed
distributed design to evolving components by regarding a
part of installed components as a basement network in a
hierarchical manner. Finally, we show the efficiency of the
proposed method through an example of evolving power
network systems.

This paper is organized as follows: In Section II, we
formulate evolving network systems. In Section III-A, we
design a stabilizing controller which guarantees that the
whole evolving network system is kept to be stable as long
as the evolving component does not spoil the local stability
of the part of the evolving network systems. On the basis
of this result, in Section III-B, we consider hierarchical
distributed design of stabilizing controllers. In Section IV,
we demonstrate the proposed method through an evolving
power network system example. Finally, concluding remarks
are provided in Section V.

Notation: We denote the set of real numbers by R and
the n-dimensional identity matrix by In. Furthermore, for
N = {1, . . . , N}, we denote the block-diagonal matrix
having matrices M1, . . . ,MN on its diagonal blocks by
dg(Mi)i∈N. If not confusing, we omit the subscript of i ∈
N. We denote Σ : u(t) �→ y(t) by a finite-dimensional
nonlinear time-invariant system ẋ(t) = f(x(t), u(t)) with
y(t) = g(x(t), u(t)) such that there exists a solution x(t)
for any bounded input u(t). If not confusing, we omit the
time variable of t. Through this paper, Σ is said to be
stable in the sense that Σ is globally input-to-state stable
[8] unless otherwise stated. Given μ : u1 �→ y1 and Σ :
{u1, u2} �→ {y1, y2}, (Σ, μ) denotes the system from u2
to y2. Furthermore, given κ : y2 �→ u2, we denote the
autonomous system of Σ with μ and κ by (Σ, μ, κ).

II. FORMULATION OF EVOLVING NETWORK SYSTEMS

In this paper, we deal with evolving network systems
as described in Section I where the system evolves by
connection of evolving components to a basement network.
The schematic depiction of evolving network systems is
shown in Fig. 1. First, we formulate the basement network
composed of N subsystems where the dynamics of the ith
subsystem is described by

Σi :

⎧⎨
⎩

ẋi = Aixi +Biui +
∑

j �=i Ji,jwj +Rivi
yi = Cixi
wi = Sixi

(1)

for i ∈ N := {1, . . . , N} where Ai ∈ R
ni×ni , Bi ∈

R
ni×bi , Ji,j ∈ R

ni×qj , Ri ∈ R
ni×ri , Ci ∈ R

pi×ni and
Si ∈ R

qi×ni . In addition, input ui and output yi are used
for the interconnection with an evolving component, vi is
an input signal from a controller to be designed in this
paper, and wi is used for the connection to other subsystems.
Assume that yi and wi are measureable even though similar

Fig. 2. Evolving component

results are available by designing an observer to estimate
wi. In this paper, we focus on controller design with explicit
consideration on the network structure of Σi in (1) and we
do not discuss on communication delay among subsystems.

In what follows, we use the following notation:

• :=

N∑
i=1

•i, ∀• ∈ {n, b, r, p, q}

and

J :=

⎡
⎢⎣
J1,1 · · · J1,N

...
. . .

...
JN,1 · · · JN,N

⎤
⎥⎦ ∈ R

n×q

where Ji,j = 0 if the ith and jth subsystems are not
connected. Furthermore

A := dg(Ai) + Jdg(Si) ∈ R
n×n. (2)

Then, the whole basement network dynamics is described by

Σ :

⎧⎨
⎩

ẋ = Ax+ dg(Bi)u+ dg(Ri)v
y = dg(Ci)x
w = dg(Si)x

(3)

where x := [xT1 , . . . , x
T
N ]T and u, v, y, w are defined in a

similar way. In what follows, the pair (A, dg(Ri)) is assumed
to be stabilizable.

Next, let us define each evolving component that is an
interconnected system of a given component μgi and a
designable component μci as shown in Fig. 2. For example in
power systems, μg

i represents a PV generator installed into
a power system and μci represents a controller to suppress
the output power from the PV generator. We call the whole
interconnected system in Fig. 2 an evolving component
described by

μi : {yi, zi} �→ ui, i ∈ N (4)

where ui and yi in (1) and zi is an input signal from a
controller to be designed below.

In this paper, we say μi evolves in the sense that a new
component is connected to Σi one by one. This situation is
represented by the change of the dynamics of μgi including
the dimension of its internal state variables. Furthermore, we
denote a family of evolving components by {μi}i∈N. If not
confusing, we omit the subscript of i ∈ N.

III. STABILIZATION OF EVOLVING NETWORK SYSTEMS

In this section, we consider the stabilization of (Σ, {μi}).
One approach is to design the controller part {μci} in Fig. 2
by using an existing distributed controller design method,
e.g., [3]. However, this approach is not practical because such
existing methods require us to redesign all of {μci} stabilizing



Fig. 3. The whole evolving network system with controller if N = 2

(Σ, {μi}) whenever μi evolves. To overcome this difficulty,
first, we show in Section III-A a result for an evolving net-
work system, where the dimension of the basement network
and the evolving component are supposed to be low enough
to make the existing control synthesis methods applicable.
On the basis of this result, in Section III-B, we consider the
stabilization of large-scale evolving network systems.

A. Distributed Design of Stabilizing Controllers

Let us consider designing {μci} in Fig. 2 in a distributed
manner. To this end, by redesigning only μci , not the all
of {μc

i}, we need to guarantee the stability of the whole
evolving network system evolving as the installation of
new components. More specifically, we consider designing
a stabilizing controller to guarantee that the whole network
system is stable as long as the system evolves while keeping
the stability of (Σi, μi) for each i ∈ N.

First, we give the following theorem, which corresponds
to a slight extension of the result in [6], [7]:

Theorem 1: Given Σ in (3), consider

Φ:

⎧⎨
⎩
φ̇ = (dg(Ai) + dg(Ri)F )φ+ Jw
v = Fφ
z = dg(Ci)φ

(5)

where F stabilizes A + dg(Ri)F . Consider μi in (4) de-
scribed by

μi :

{
ξ̇i = fi(ξi, yi − zi),
ui = gi(ξi, yi − zi),

i ∈ N. (6)

where zi ∈ R
pi is defined as [zT1 , . . . , z

T
N ]T = z. Then, the

whole network system of (Σ,Φ, {μi}) is stable if (Σi, μi) is
stable for all i ∈ N.

With N = 2, the structure of the evolving network
system with the stabilizing controller in Theorem 1, i.e.,
(Σ,Φ, {μi}), is shown in Fig. 3. Theorem 1 shows that, to
stabilize the whole closed-loop system, we can individually
design

• Φ in (5), and
• μc

i in Fig. 2 such that (Σi, μi) is stable for each i ∈ N.

Hence, the redesign of only μci can manage to keep the
stability of the whole system for the evolution of μi.

Let us consider the situation where n = n1 + · · · + nN
and ngi , denoting the dimensions of the basement network
Σ in (3) and the evolving part μgi in Fig. 2, are both
relatively small in the sense that the existing control methods
are directly applicable. In this situation, we can handle the
evolving network system by the above distributed design of
controllers, because the the dimension of Φ is n and that of

Fig. 4. Evolving network system if evolving components have network
structure

μc
i is at most ni+n

g
i . In Section III-B below, supposing that

the dimension ngi of the evolving part μgi is large, we propose
a hierarchical distributed design of stabilizing controllers for
a scalable handling of such large-scale evolving networks.

B. Hierarchical Distributed Design of Stabilizing Con-
trollers

In this subsection, we suppose that numerous components
are installed into the basement network i.e., ngi is so high
that we cannot design the controller μci in Fig. 2 stabilizing
(Σi, μi) by existing control synthesis methods. For such a
large-scale evolving network system, we consider stabilizing
controller design in what follows.

In this subsection, we deal with a basement network Σ in
(3) composed of N = 2 subsystems for the sake of simple
explanation. Suppose that each of evolving component μ1
and μ2 in (4) is linear and they have the network structure
as shown in Fig. 4. Similarly to μi in Fig. 2, we suppose
that μi1 in Fig. 4 is also an interconnected system of a given
component μgi1 and a controller μci1.

The main idea is to apply the distributed design proposed
in Section III-A to evolving components by regarding a
part of installed components as a basement network in a
hierarchical manner. The design procedure is summarized as
follows:

(i) Regard (Σ1,Σ2) as the basement network. Design
a controller Φ such that (Σ1,Σ2,Φ, {μi}) is stable
if (Σi, μi) is stable.

(ii) Regard (Σi,Σi1) as the basement network. Design
a controller Φi such that (Σi,Σi1,Φi, μi1) is stable
if (Σi1, μi1) is stable.

(iii) Design a controller in μi1 such that (Σi1, μi1) is
stable.

First, we regard the network system of (Σ1,Σ2) as a base-
ment network of Σ. Then, we have the following corollary
from Theorem 1:

Corollary 1: Consider Σ in (3) for N = 2 and assume
that μi in (6) is linear for i ∈ {1, 2}. Let Φ be given by (5).
Then, (Σ,Φ, {μi}) is stable if (Σi, μi) for i ∈ {1, 2} are
stable.

Next, we consider stabilizing (Σi, μi). We regard Σi1,
which is a part of the evolving component μi, and Σi as
a basement network where the dynamics of Σi1 is described



Fig. 5. Evolving network system with controller in (Σi, µi)

by

Σi1 :

⎧⎨
⎩

ẋi1 = Ai1xi1 +Bi1ui1 + Ji1yi +Ri1vi1,
yi1 = Ci1xi1,
ui = Si1xi1,

i ∈ {1, 2}

(7)
where xi1 ∈ R

ni1 , yi1 ∈ R
pi1 , ui1 ∈ R

bi1 , and Ai1, Bi1, Ji1,
Ri1, Ci1 and Si1 are real and of compatible dimensions. In
addition, define μi1 by

μi1 : yi1 − zi1 �→ ui1, i ∈ {1, 2} (8)

where zi1 ∈ R
pi1 . Then, we have the following corollary

from Theorem 1:

Corollary 2: Let i ∈ {1, 2}. Consider Σi in (1), Σi1 in
(7), μi in (6) and μi1 by (8). For i ∈ {1, 2}, give

Φi :

⎧⎨
⎩
φ̇i = (dg(Ai, Ai1) + dg(Ri, Ri1)Fi)φi + Jiwi

vi1 = Fiφi

zi1 = dg(Ci, Ci1)φi
(9)

with Fi stabilizing Ai + dg(Ri, Ri)Fi where

Ji :=

[
Bi

Ji1

]
, Ai := dg(Ai, Ai1) + Jidg(Si, Si1)

and wi := [uTi , y
T
i ]

T. Then, (Σi,Φi, μi1) is stable if (Σi, μi1)
and Σi are stable.

In Corollary 2, we assume the stability of Σi for simplicity
even though we can remove this assumption by designing a
stabilizing controller for Σi, which is at most ni-dimensional.
Note that μi may be larger dimensional even if Σi is stable
because numerous amount of components μgi in Fig. 2 is
forced to be installed.

In Fig. 5, we show the network structure of (Σi, μi)
with Φi. Note that the stability of the whole system
of (Σ,Φ, {Φi}, {μi1}) is guaranteed from Corollary 1 if
(Σi, (Φi, μi1)) is stable. Combining Corollary 1, 2, we have
the following theorem:

Theorem 2: Let N = 2 and Σ be the network system of
({Σi}, {Σi1}) where Σi and Σi1 are defined in (1) and (7).
Define μi by (8). Give Φ by Corollary 1 and Φi by (9). Then,
the system (Σ,Φ, {Φi}, {μi1}) is stable if (Σi, μi1) is stable
for each i ∈ {1, 2}.

Theorem 2 shows that, to stabilize the whole closed-loop
system, we can individually design

• (n1 + n2)-dimensional controller Φ by Corollary 1,
• (ni + ni1)-dimensional controller Φi by (9), and

• at most (ni1+n
g
i1)-dimensional controller in μi1 where

ngi1 denotes the dimension of a given component in μi1.

Let us consider the situation where ni, ni1 and ngi1 are
relatively small in the sense that the existing control methods
are directly applicable. In this situation, we can handle
the evolving network system by the above hierarchical dis-
tributed design of controllers. Furthermore, we consider the
situation where ngi1 is large. In this situation, regarding a part
of the evolving component μgi1 as a basement network, we
apply the above distributed design method to the basement
network. As a result, we can design a low-dimensional
stabilizing controllers in the sense that the existing control
methods are directly applicable. Therefore, the proposed
hierarchical distributed design enables us to realize scalable
handling of the large-scale evolving network systems.

IV. NUMERICAL EXAMPLE

In this section, we demonstrate the efficiency of the
proposed method through an example of evolving power
systems. First, we give the dynamical model of the initial
basement network, i.e., Σ in (3) without any evolving com-
ponents.

A. Initial Basement Network Model

We deal with a power network model [9] composed of six
areas (subsystems), which corresponds to N = 6. Individual
subsystem includes nGi = 3 generators and nLi = 2 loads.
For k ∈ {1, . . . , nGi }, the dynamics of the kth generator is
described by

ΣG
i[k] :

{
ζ̇i[k] = AG

i[k]ζi[k] + bGi[k]τ
G
i[k] + bGi[k]ui[k] + rGi[k]vi[k]

δGi[k] = cGζi[k]
(10)

where the states of ζi[k] ∈ R
4 denote the phase angle

difference, angular velocity difference, mechanical input dif-
ference, and valve position difference. In addition, ui[k] ∈ R

and τGi[k] ∈ R denote the electric torque difference by
the evolving component μi and connected generators and
loads inside a basement network, respectively. Furthermore,
vi[k] ∈ R denotes the command of angular velocity difference
given by Φ and δGi[k] ∈ R denotes the phase angle difference.
Furthermore, the system matrices in (10) are given by

AG
i[k] :=

⎡
⎢⎢⎣
0 1 0 0
0 −DG

i[k]/M
G
i[k] −1/MG

i[k] 0

0 0 −1/TG
i[k] 1/TG

i[k]

0 1/kGi[k] 0 −RG
i[k]/k

G
i[k]

⎤
⎥⎥⎦

bGi[k] :=
1

MG
i[k]

e42, cG := (e41)
T, rGi[k] :=

1
kG
i[k]

e44
(11)

where eni ∈ R
n is the ith column of In and MG

i[k], D
G
i[k],

TG
i[k], k

G
i[k] and RG

i[k] denote the inertia constant, damping
coefficient, turbine time constant, governor time constant,
and droop characteristic, respectively. These parameters
are randomly chosen from {10, 90}, {1.0, 2.0}, {3.0, 10},
{0.01, 0.02} and {0.10, 0.11}, respectively. Note that the unit
of all physical variables is [p.u.] unless otherwise stated.
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Fig. 6. Initial basement network including six areas

Next, for k ∈ {1, . . . , nLi }, the dynamics of the ith load
is described by

ΣL
i[k] :

{
ψ̇i[k] =AL

i[k]ψi[k] + bLi[k]τ
L
i[k]

δLi[k] = cLψi[k]
(12)

where each state of ψi[k] ∈ R
2 denotes the phase angle

difference and angular velocity difference, and τLi[k] ∈ R,
δLi[k] ∈ R denotes the electric torque difference and phase
angle difference, respectively. Furthermore, the system ma-
trices in (12) are given by

AL
i[k] :=

[
0 1
0 −DL

i[k]/M
L
i[k]

]
, bLi[k] :=

1

ML
i[k]

e22, c
L := (e21)

T

where ML
i[k] and DL

i[k] denote the inertia constant and damp-
ing coefficient, respectively. These parameters are randomly
chosen from {5, 10, 30} and {0.1, 0.3, 0.5}, respectively.
Note that the dimension of each subsystem is 16 and that
of the basement network is 96.

Supposing that τGi[k] and τLi[k] come from the interconnec-
tion among generators and loads, we give the interconnection
structure by

τ = −Y δ,
{
τ := [ (τG1 )T, (τL1 )

T, · · · , (τGN )T, (τLN )T ]T

δ := [ (δG1 )
T, (δL1 )

T, · · · , (δGN )T, (δLN )T ]T

(13)
where NY :=

∑N
i=1(n

G
i + nLi ) and

Y = Y T, Y 1NY
= 0, 1n := [1, . . . , 1]T ∈ R

n

and
τ�i :=

[
τ�i[1], · · · , τ�i[n�

i ]

]
δ�i :=

[
δ�i[1], · · · , δ�i[n�

i ]

] , 	 ∈ {G,L}.

In (13), Y compatible with the interconnection structure
among generators and loads in each subsystem is given as a
graph Laplacian of the Holme-Kim model [10]. In addition,
the interconnection among subsystems is supposed that the
first generators in individual subsystems are interconnected
as shown in Fig. 6, which yields the signal used for inter-
connection among subsystems as

wi := δi[1] ∈ R, i ∈ N. (14)

The non-zero off-diagonal elements of Y are randomly
chosen from (0.1, 1].

Fig. 7. Evolving component µi connected to Σi

Initial basement 6 components 18 components
network installed installed

Fig. 8. Evolving power network systems

Finally, the state variable of Σi in (1) is defined by

xi := [(ζi[1])
T, · · · , (ζi[nG

i ])
T, (ψi[1])

T, · · · , (ψi[nL
i ]
)T]T

and
vi := [vi[1], · · · , vi[nG

i ]]
T ∈ R

nG
i (15)

In addition, supposing that the first generator in each subsys-
tem connects to evolving components described below, we
define

ui := ui[1] ∈ R, yi := δGi[1] ∈ R. (16)

B. Stabilization of Evolving Power Network System

Next, we give the dynamics of evolving components μi in
(4). As shown in Fig. 7, each μi is composed of a controller
μc
i1 and three areas including one generator and two loads.

Each generator is assumed that mechanical torque is control
input. Thus, we give the generator dynamics by (10) without
the model of turbine and governor, i.e.,

ΣμG

ij :

{
ζ̇μG

ij = AμG

ij ζ
μG

ij + bμG

ij uij + bμG

ij τ
μG

ij + bμG

ij vij

δμG

ij = cμGζμG

ij

(17)
for j ∈ {1, 2, 3} where ζμG

ij ∈ R
2 and AμG

ij , bμG

ij , cμG are
given similarly to AL

i , bLi , cL in (11), respectively.
For j = 1, uij is given by

ui1 = yi − zi + uμG

i1

where uμG

i1 denotes a control input from μci1 in Fig. 7. More
specifically, we take μci1 as a static controller, i.e

μc
i1 : uμG

i1 = Kiζ
μG

ij , Ki ∈ R
2. (18)
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Fig. 9. Transient angular velocities of all generators and loads in Σ1 in the initial basement network

Furthermore, ΣμG

ij provides the electrical torque difference
to ΣG

i , i.e.,,
ui = Yi1(δ

μG

i1 − yi)

where Yi1 denotes an admittance between ΣG
i and ΣμG

i1 . The
parameter Yi1 is randomly chosen from (0.1, 1] for i ∈ N.
For j ∈ {2, 3}, uij denotes mechanical input torque from
further evolving components connecting to μi. Furthermore,
a measurement output for the further evolving components
is given by

yij := [δμG

i2 , δ
μG

i3 ]T. (19)

Let an initial basement network Σ in (3) be given by
Section IV-A, which is shown in the leftmost of Fig. 8. By
connecting μi to Σi, we have the whole network system
(Σ, {μi}), which is shown in the middle of Fig. 8. To
guarantee the stability of the entire system, we construct Φ
in (5), which becomes 96-dimensional system.

Next, we consider the situation that further two compo-
nents where each of them has the same structure of μi
connect to ΣμG

i2 and ΣμG

i3 by ui2, ui3 in (17) and yij in
(19). Then, the power system is changed as shown in the
rightmost in Fig. 8. Implementing six stabilizing controllers
as described in Section III-B, the whole network system be-
comes stable. Then, each of the controllers is 12-dimensional
system.

Finally, we compare the performance of the initial base-
ment network, that with six components and stabilizing
controllers, and that with 18 components and stabilizing
controllers, respectively. To see this, we give the initial
angular velocity difference of all generators and loads in
the initial basement network randomly and the initial value
of all evolving components and controllers as zero. In
Fig. 9, we plot the transient angular velocity differences
of all generators and loads in Σ1. Furthermore, the L2-
norm of the angular velocity differences of all generators
and loads in the initial basement network becomes 6.3, 6.1,
6.1, respectively. These results imply that the performance
of the whole evolving power network system is kept by
the designed controllers. Note that the network system in
the rightmost in Fig. 8 is 204-dimensional system and the
system is stabilized by one 96-dimensional controller and six
12-dimensional controllers. This implies that the proposed
method enables us to handle evolving network systems by
low-dimensional controllers.

V. CONCLUSION

In this paper, we have proposed a hierarchical distributed
design method of stabilizing controllers for evolving network
systems. First, we have developed a design method of a
stabilizing controller for an evolving network where the
dimension of the basement network and individual evolving
components are supposed to be low enough to make existing
control synthesis methods applicable. This stabilizing con-
troller has the ability to guarantee that the whole evolving
network system is kept to be stable as long as the evolving
component does not spoil the local stability of the part of the
evolving network system. Next, on the basis of this controller
design, we have proposed hierarchical distributed design
of stabilizing controllers for a large-scale evolving network
system by applying the proposed distributed design to evolv-
ing components hierarchically. The hierarchical distributed
design enables us to handle large-scale evolving network
systems in a scalable manner. Finally, we have demonstrated
the proposed method through an example of evolving power
network systems.
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