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Abstract— In this paper, we propose a design method of
hierarchical distributed controllers for networked linear sys-
tems. The hierarchical distributed controller has an advantage
that an L2-performance of the closed-loop system improves
as improving a performance of local controllers that stabilize
disjoint subsystems individually. Towards systematic design, we
utilize state-space expansion that enables us to deal with the
state variables associated with disjoint subsystems and those
associated with interference among hierarchically clustered
subsystems in a tractable manner. Moreover, by the integration
of a hierarchical distributed observer having good compatibility
with the structured controller, we build a framework to imple-
ment an observer-based hierarchical distributed control. The
efficiency of the proposed control system is shown through an
example of power networks.

I. INTRODUCTION

As technology advances, the architecture of systems of
interest to control community becomes more complex and
larger in scale. For example, in smart grid, it is required to
maintain supply-demand balance of power systems involving
more than one million consumers with suitable control of a
number of power plants [1], [2]. Typically, such large-scale
complex systems are spatially distributed and networked. In
view of this, it is crucial to build a framework for designing
distributed control systems having good compatibility with
the spatial distribution of networked systems [3], [4].

Even though many distributed controller synthesis meth-
ods have been developed in literature [5], these do not fully
comply with practical application because controller design
cannot be done in a distributed fashion. In view of this, a
notion of distributed design is introduced in [6], where a
performance limitation of controllers that are designed in
a distributed manner is discussed by confining the class of
systems to handle. In addition, a distributed design method
in terms of the L1-induced norm has been developed for
positive linear systems [7]. However, since this method fully
utilizes a specific property of positive systems, generalization
to a broader class of systems is not straightforward. One
difficulty in such distributed design is that the improvement
of local controller performance does not always imply that of
closed-loop system performance due to negative interference
among subsystems, and it may violate even the stability of
closed-loop systems. Thus, it is important to understand how
the variation of individual controllers in distributed control
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affects the performance as well as the stability of closed-loop
systems.

Against this background, in this paper, we propose a
design method of hierarchical distributed controllers for
general linear systems. The hierarchical distributed controller
has an advantage that an L2-performance of the closed-
loop system is guaranteed for all sets of locally stabilizing
controllers. Towards systematic distributed design, we first
introduce state-space expansion, similar to one in [8], to
independently deal with the state variables associated with
disjoint subsystems and those associated with the interfer-
ence among hierarchically clustered subsystems. This state-
space expansion enables us to construct a hierarchically
structured controller that attenuates the negative interference
not only among hierarchically clustered subsystems but also
among locally stabilizing controllers.

In [9], the authors have developed fundamental mathemat-
ical tools for designing hierarchical distributed controllers on
the basis of state-space expansion. However, the authors have
shown only the stability of closed-loop systems for all locally
stabilizing controllers. In addition, we need to measure all
outputs of subsystems.

On the other hand, in this paper, it is shown that an
L2-performance of closed-loop systems improves as just
improving an L2-performance of local controllers. This result
clearly involves that in [9] as a special case. Moreover, by
the integration of a hierarchical distributed observer proposed
in [10], we build a framework to implement an observer-
based hierarchical distributed control. The efficiency of the
proposed control is shown through a numerical example for
power networks.

The organization of this paper is as follows: In Section II,
giving a mathematical formulation of hierarchical clustering
of networked systems, we first formulate a design problem of
hierarchical distributed controllers. In Section III-A, based on
state-space expansion for dealing with networked systems in
a hierarchical manner, we give a solution to the hierarchical
distributed control design problem. Moreover, in Section III-
B, we built a framework to implement an observer-based
hierarchical distributed control by the integration of a hi-
erarchical distributed observer. Then, Section IV devotes to
show the efficiency of the proposed control structure through
a numerical example of power networks. Finally, concluding
remarks are provided in Section V.

Notation: We denote the set of real numbers by R, the
n-dimensional identity matrix by In, and the cardinality of a
set I by |I|. Furthermore, for N = {1, . . . , N}, we denote
the block-diagonal matrix having matrices M1, . . . ,MN on



its diagonal blocks by dg(Mi)i∈N . In particular, if not
confusing, we omit the subscript of i ∈ N . The L2-
norm of a square integrable function v(t) ∈ R

n is defined
by ‖v(t)‖L2

:=
(∫∞

0
vT(t)v(t)dt

) 1
2 . The H∞-norm of a

stable proper transfer matrix G is defined by ‖G(s)‖H∞ :=
sup
ω∈R

‖G(jω)‖ where ‖ · ‖ denotes the induced 2-norm.

II. PROBLEM FORMULATION

A. Review of Decentralized Control

In this paper, we deal with networked linear systems
composed of N subsystems. For each i ∈ N := {1, . . . , N},
the dynamics of the ith subsystem is described by

Σi :

{
ẋi = Aixi +

∑N
j �=iAi,jxj +Biui

yi = Cixi
(1)

where Ai ∈ R
ni×ni , Ai,j ∈ R

ni×nj , Bi ∈ R
ni×mi , and

Ci ∈ R
pi×ni . In this notation, we consider a set of local

controllers that stabilizes each Σi by using the input signal
ui and the sensor signal yi. The local controller associated
with Σi is described by

κi :

{
ξ̇i = Kiξi + Liyi
ui = Miξi

(2)

where Ki ∈ R
ri×ri , Li ∈ R

ri×pi , and Mi ∈ R
mi×ri .

Let us consider the disjoint subsystem with the local
controller described by[

ẋi
ξ̇i

]
=

[
Ai BiMi

LiCi Ki

] [
xi
ξi

]
, i ∈ N . (3)

For a given constant θi > 0, we suppose that (3) satisfies

‖xi(t)‖L2
≤ θi

for all xi(0) ∈ R
ni such that ‖x(0)‖ = 1 where x :=

[xT1 , . . . , x
T
N ]T. Obviously, if all subsystems are disjoint, then

the closed-loop system ({Σi}i∈N , {κi}i∈N ) has the L2-
performance

‖x(t)‖L2
≤ ‖θ‖ (4)

where θ := [θ1, . . . , θN ]T. In what follows, we denote a set
of local controllers achieving the L2-performance in (4) for
disjoint subsystems, i.e., Σi in (1) with Ai,j = 0 for all
j ∈ N\{i}, as {κi}i∈N ∈ Kθ.

However, if Ai,j �= 0, i.e., if the subsystems are intercon-
nected, the L2-performance of disjoint closed-loop systems
does not provide any guarantee for the whole closed-loop
system in general. In this paper, we consider designing a
hierarchical distributed controller that attenuates negative
interference among subsystems.

B. Hierarchical Distributed Control Problem

In what follows, we use the notation of

n :=

N∑
i=1

ni, m :=

N∑
i=1

mi, p :=

N∑
i=1

pi r :=

N∑
i=1

ri

and

A :=

⎡
⎢⎣

A1 · · · A1,N

...
. . .

...
AN,1 · · · AN

⎤
⎥⎦ ∈ R

n×n. (5)

We consider introducing a hierarchical structure into net-
worked systems. Let L := {1, . . . , L} with an integer L that
represents the number of system layers. We define a family
of index sets {N (l)}l∈L such that

N ≥ |N (1)| ≥ · · · ≥ |N (L)| = 1, N (l) = {1, . . . , |N (l)|}.
(6)

Furthermore, for each l ∈ {0, . . . , L−1}, we define a family
of cluster sets {C(l)

i }i∈N (l+1) such that⋃
i∈N (l+1)

C(l)
i = N (l), C(l)

i ∩ C(l)
j = ∅, i �= j, (7)

where N (0) is regarded as N .
Let A(l)

i ∈ R
n
(l)
i ×n

(l)
i denote the principal submatrix of A

compatible with C(l−1)
i . By definition, it follows that∑
i∈N (l)

n
(l)
i = n, l ∈ L,

and A(L) = A. In the rest of this paper, we regard A
(0)
i as

Ai for all i ∈ N .
We give the dynamics of the whole networked system as

Σ :

{
ẋ = Ax+ dg(Bi)u+

∑L
l=1 dg(B

(l)
i )u(l)

y = dg(Ci)x
(8)

where the input signal u := [uT1 , . . . , u
T
N ]T ∈ R

m and
the output signal y := [yT1 , . . . , y

T
N ]T ∈ R

p are used for
the interconnection to local controllers, and the term of
u(l) expresses an additional input signal from a hierarchical
distributed controller to be explained below. In what follows,
the pair (A

(l)
i , B

(l)
i ), which is defined as being compatible

with the hierarchical structure of networked systems, is
assumed to be stabilizable for any i ∈ N (l) and l ∈ L.
Similarly, for ξ := [ξT1 , . . . , ξ

T
N ]T ∈ R

r, the dynamics of
local controllers is expressed by

{κi}i∈N :

{
ξ̇ = dg(Ki)ξ + dg(Li)(y + z)
u = dg(Mi)ξ

(9)

where the term of z expresses an additional input signal as
well.

To construct appropriate additional input signals {u(l)}l∈L
and z, we consider designing a hierarchical distributed con-
troller given by

Φ(l) :

{
φ̇(l) = dg(E

(l)
i )φ(l) +G(l)x+

∑L
k=l dg(B

(k)
i )u(k)

u(l) = dg(F
(l)
i )(φ(l) − φ(l+1))

(10)
where φ(L+1) is regarded as zero, and

E
(l)
i ∈ R

n
(l)
i ×n

(l)
i , F

(l)
i ∈ R

m
(l)
i ×n

(l)
i , B

(l)
i ∈ R

n
(l)
i ×m

(l)
i

G(l) ∈ R
n×n



are design parameters. Moreover, the additional input to local
controllers is given by

z = dg(Hi)φ
(1)

where Hi ∈ R
pi×ni is another design parameter. In the rest

of this paper, we suppose that ξ(0) = 0 and φ(l)(0) = 0 for
all l ∈ L. Furthermore, we denote the hierarchical distributed
controller by {Φ(l)}l∈L.

In this setting, the following control problem for the
closed-loop system (Σ, {Φ(l)}l∈L, {κi}i∈N ) is addressed:

Problem 1: Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such that

(6) and (7), consider Σ in (8) with {κi}i∈N in (9). Then, for
a given constant ε > 0, find {Φ(l)}l∈L in (10) satisfying

‖x(t)‖L2
≤ ‖θ‖+ ε (11)

for all x(0) ∈ R
n such that ‖x(0)‖ = 1 and {κi}i∈N ∈ Kθ.

In Problem 1, we formulate a problem to find a hierarchi-
cal distributed controller satisfying that an L2-performance
of the closed-loop system, which necessarily implies the
stability of the closed-loop system, is robustly guaranteed
for all sets of locally stabilizing controllers.

III. HIERARCHICAL DISTRIBUTED CONTROL SYSTEMS

A. Design of Hierarchical Distributed Controllers

To systematically design a hierarchical distributed con-
troller, we consider transforming the realization of Σ into a
tractable one based on the following state-space expansion:

Lemma 1: Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such that

(6) and (7), consider Σ in (8). For l ∈ L, define{
˙̃x(l) = dg(A

(l)
i )x̃(l) + dg(B

(l)
i )u(l) + Γ(l)

∑l−1
k=0x̃

(k)

˙̃x(0) = dg(Ai)x̃
(0) + dg(Bi)u

(12)
where

Γ(l) := dg(A
(l)
i )i∈N (l) − dg(A

(l−1)
i )i∈N (l−1) . (13)

If x(0) =
∑L

l=0 x̃l(0), then

x(t) =
L∑

l=0

x̃l(t), t ≥ 0 (14)

for any u and {u(l)}l∈L.
Proof: Let x̃ = [(x̃(L))T, . . . , (x̃(1))T, (x̃(0))T]T. Not-

ing that

TÃ = AT, T B̃ =
[
B(L), . . . ,dg(B

(1)
i ), dg(Bi)

]
for T := [In, . . . , In] ∈ R

n×(L+1)n where Ã and B̃ are
defined as in (15), we have T x̃(t) = x(t).

Lemma 1 shows that the summation of all state variables
of the expanded system in (12), which has a cascade structure
shown in (15), coincides with the original state variable for
any input signals. The cascade structure of (15) gives a clear
insight into controlling the original system Σ in (8) by using
input signals u and {u(l)}l∈L. Based on this lemma, we have
the following result:

Theorem 1: Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such

that (6) and (7), consider Σ in (8) with {κi}i∈N in (9).
Define {Φ(l)}l∈L in (10) with

E
(l)
i = dg(A

(l−1)
j )

j∈C(l−1)
i

, F
(l)
i = F

(l)
i , B

(l)
i = B

(l)
i

G(l) =
∑L

k=l Γ
(k), Hi = −Ci

(16)
where F (l)

i satisfies that A(l)
i + B

(l)
i F

(l)
i is stable, and Γ(l)

is defined as in (13). Furthermore, define

γ(l) :=

∥∥∥∥(sIn − dg(A
(l)
i +B

(l)
i F

(l)
i )

)−1

Γ(l)

∥∥∥∥
H∞

(17)

for each l ∈ L. Then

‖x(t)‖L2
≤ ‖θ‖

L∏
l=1

(
1 + γ(l)

)
(18)

for all x(0) ∈ R
n such that ‖x(0)‖ = 1 and {κi}i∈N ∈ Kθ.

Proof: Based on Lemma 1, we consider the state
feedback of u(l) = dg(F

(l)
i )x̃(l), l ∈ L, and the output

feedback of {
ξ̇ = dg(Ki)ξ + dg(LiCi)x̃

(0)

u = dg(Mi)ξ

for the expanded system in (12). By the coordinate transfor-
mation as

φ(l) =

L∑
k=l

x̃(k), l ∈ L (19)

with the relation in (14), we have the autonomous system in
(20) where

Λ(l) := dg
(
dg(A

(l−1)
j )

j∈C(l−1)
i

+B
(l)
i F

(l)
i

)
i∈N (l)

Θ(l) := dg
(
B

(l)
i F

(l)
i − dg(B

(l−1)
j F

(l−1)
j )

j∈C(l−1)
i

)
i∈N (l)

with B
(0)
i F

(0)
i = 0. Giving x̃(0)(0) = x(0), we have

‖x̃(0)(t)‖L2
≤ ‖θ‖. Thus, (18) is proven by (14) in con-

junction with the triangle inequality of the L2-norm.
Theorem 1 shows that the hierarchical distributed con-

troller {Φ(l)}l∈L given by (16), whose compositional units
can be designed independently of designing local controllers,
achieves the L2-performance as shown in (18). Thus, a
solution to Problem 1 can be obtained by designing the
feedback gains F

(l)
i that make the values of γ(l) in (17)

small enough. As shown in (18), the L2-performance of the
whole closed-loop system improves as just improving the
L2-performance of local controllers in (4).

From the structure of the transfer matrix in (17), we see
that the function of the controller Φ(l) is to attenuate negative
interference among clustered subsystems, and the magnitude
of interference attenuation is measured by γ(l). In addition,
from G(l) in (16), we notice that the lth layer controller Φ(l)

utilizes

w(l) :=

L∑
k=l

Γ(k)x (21)

as its input signal. Since Γ(l) in (13) represents the intercon-
nection among clusters in the (l− 1)th layer, the signal w(l)



Ã :=

⎡
⎢⎢⎢⎢⎢⎢⎣

A(L) Γ(L) · · · Γ(L) Γ(L)

dg(A
(L−1)
i ) · · · Γ(L−1) Γ(L−1)

. . .
...

...
dg(A

(1)
i ) Γ(1)

dg(Ai)

⎤
⎥⎥⎥⎥⎥⎥⎦
, B̃ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

B(L)

dg(B
(L−1)
i )

. . .
dg(B

(1)
i )

dg(Bi)

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ̇(L)

φ̇(L−1)

...
φ̇(1)

ẋ

ξ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Λ(L) Γ(L)

Θ(L) Λ(L−1) Γ(L−1) + Γ(L)

...
...

. . .
...

Θ(L) Θ(L−1) · · · Λ(1) Γ(1) + · · ·+ Γ(L)

Θ(L) Θ(L−1) · · · Θ(1) A dg(BiMi)
−dg(LiCi) dg(LiCi) dg(Ki)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ(L)

φ(L−1)

...
φ(1)

x
ξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(20)

contains the information on the interaction among clustered
subsystems. Consideration on the availability of {w(l)}l∈L
will be given in Sections III-B below.

Remark 1: Note that Γ(l) becomes a lower-rank matrix
if the interconnection among the corresponding clusters is
sparser. Furthermore, the function of Φ(l) is to attenuate
negative interference among clustered subsystems, and the
degree of interference attenuation is measured by γ(l) in (17).
Thus, inspecting the structure of the transfer matrix in (17),
we see that the magnitude of γ(l) can be efficiently reduced
if

(i) the rank of Γ(l) is low enough, and
(ii) the input signal given by B(l)

i can effectively atten-
uate the interference signal injected through Γ(l).

Therefore, it is important to devise a method to appropriately
find an actuator allocation as well as hierarchical clustering
towards scalable implementation of hierarchical distributed
control.

B. Integration with Hierarchical Distributed Observers

The hierarchical distributed controller {Φ(l)}l∈L given
by (16) requires the sensor signals {w(l)}l∈L in (21). In
view of this, a number of sensors are possibly required to
implement the control system. For example, to implement
Φ(1) in the first layer, we need to measure w(1) that contains
the information on the interaction among all subsystems Σi.

To reduce the number of required sensors, on the basis
of a hierarchical distributed observer [9] having good com-
patibility with the hierarchical structure of control systems,
we consider estimating w(l) for lower layer controllers from
other sensor signals. To this end, for L̂ := {1, . . . , L̂} with
an integer L̂ < L, we suppose that

y(l) := dg(C
(l)
i )x, l ∈ L̂

v(l) := Γ(l)x, l ∈ L\L̂ (22)

are available as sensor signals from clustered subsystems.
Furthermore, the pair (A

(l)
i , C

(l)
i ) is supposed to be de-

tectable for any i ∈ N (l) and l ∈ L̂. Note that the availability
of {v(l)}l∈L\L̂ is equal to that of {w(l)}l∈L\L̂. Under these
supposition, we can achieve the following observer-based
hierarchical distributed control:

Theorem 2: Given {N (l)}l∈L and {C(l)
i }i∈N (l+1) such

that (6) and (7), consider Σ in (8) with {κi}i∈N in (9). For
y(l) in (22) with H

(l)
i such that A(l)

i − H
(l)
i C

(l)
i is stable,

define {o(l)}l∈L̂ in (23) with

ŵ(l) :=

{ ∑L̂
k=l v̂

(k) + w(L̂+1), l ∈ L̂,
w(l), l ∈ L\L̂,

(24)

where w(l) is defined as in (21). Furthermore, by replacing
w(l) with ŵ(l), define {Φ(l)}l∈L in (10) with (16). Then
(Σ, {Φ(l)}l∈L, {κi}i∈N ) with {o(l)}l∈L̂ is stable for all
{κi}i∈N ∈ Kθ.

Proof: Omit due to page limitation.

The hierarchical distributed observer {o(l)}l∈L̂ in (23)
produces the estimate signals {ŵ(l)}l∈L̂, which represent
the interaction among clustered subsystems, by using the
available sensor signals in (22).

IV. NUMERICAL EXAMPLE

A. Power Network Model

In this section, we show the efficiency of the proposed
hierarchical distributed control by an example of power net-
works. We deal with a power network model [1] composed
of N subnetworks (subsystems), where the ith subsystem
consists of nGi generators and nLi loads.

For k ∈ NG
i := {1, . . . , nGi }, the dynamics of the kth

generator is described by

ΣG
[i]k :

{
ζ̇[i]k = AG

[i]kζ[i]k + 1
MG

[i]k

bGθG[i]k + 1
TG
[i]k

bu[i]k

δG[i]k = cGζ[i]k
(26)

where each element of ζ[i]k ∈ R
3 denotes a phase angle

difference, an angular velocity difference and a mechanical
input difference, and θG[i]k ∈ R, δG[i]k ∈ R, and u[i]k ∈ R

denote an electric output difference, a phase angle difference,
and a valve position difference, respectively. Furthermore,
the system matrices in (26) are given by

AG
[i]k :=

⎡
⎣ 0 1 0

0 −DG
[i]k/M

G
[i]k −1/MG

[i]k

0 0 −1/TG
[i]k

⎤
⎦



o(l) :

{
˙̂x(l) = dg(A

(l)
i −H

(l)
i C

(l)
i )x̂(l) + dg(Bi)u+

∑L
k=1 dg(B

(k)
i )u(k) + dg(H

(l)
i )y(l) + ŵ(l+1)

v̂(l) = Γ(l)x̂(l)
(23)

A = dg
(
dg(AG

[i]k), dg(A
L
[i]k)

)
i∈N

− dg

(
dg( 1

MG
[i]k

bG), dg( 1
ML

[i]k

bL)

)
i∈N

Y dg
(
dg(cG)k∈NG

i
, dg(cL)k∈NL

i

)
i∈N

Bi =

[
dg( 1

TG
[i]k

b)

02nL
i ×nG

i

]
, Ci =

[
InG

i
⊗ [I2 02×1] 02nG

i ×2nL
i

] (25)

and bG := e32, cG := (e31)
T, b := e33 where MG

[i]k, D
G
[i]k

and TG
[i]k denote a mechanical inertia, a damping coefficient

and a turbine time constant, respectively, and eni ∈ R
n

denotes the ith column of In.
In a similar fashion, for k ∈ NL

i := {1, . . . , nLi }, the
dynamics of the kth load is described by

ΣL
[i]k :

{
ψ̇[i]k = AL

[i]kψ[i]k + 1
ML

[i]k

bLθL[i]k

δL[i]k = cLψ[i]k

(27)

where each state of ψ[i]k ∈ R
2 denotes a phase angle

difference and an angular velocity difference, and θL[i]k ∈ R

and δL[i]k ∈ R denote an electric output difference and a
phase angle difference, respectively. Furthermore, the system
matrices in (27) are given by

AL
[i]k :=

[
0 1
0 −DL

[i]k/M
L
[i]k

]
, bL := e22, cL := (e21)

T

where ML
[i]k and DL

[i]k denote positive constants that repre-
sent an inertia constant and a damping coefficient, respec-
tively. The interconnection structure among generators and
loads are given by

θ = −Y y,
{
θ := [ (θG1 )

T, (θL1 )
T, · · · , (θGN )T(θLN )T ]T

δ := [ (δG1 )
T, (δL1 )

T, · · · , (δGN )T(δLN )T ]T

(28)
where Y ∈ R

NY ×NY represents an admittance matrix
satisfying

Y = Y T, Y 1NY
= 0,

{
1n := [1, . . . , 1]T ∈ R

n

NY :=
∑N

i=1 n
G
i + nLi ,

and
θ�i := [θ�[i]1, · · · , θ�[i]n�

i
]

δ�i := [δ�[i]1, · · · , δ�[i]n�
i
]
, � ∈ {G,L}.

We define a state variable as x := [ζT1 , ψ
T
1 , . . . , ζ

T
N , ψ

T
N ]T

where ζi := [ζT[i]1, · · · , ζT[i]nG
i
]T and ψi :=

[ψT
[i]1, · · · , ψT

[i]nL
i
]T. Furthermore, we define the input

u in (8) by u := [uT[1], · · · , uT[N ]]
T, u[i] := [u[i]1, · · · , u[i]nG

i
]

and the output y by

y := [(ζ1:2[1] )
T, · · · , (ζ1:2[N ])

T]T

ζ1:2[i] := [(ζ1:2[i]1)
T, · · · , (ζ1:2

[i]nG
i
)T]T

(29)

where ζ1:2[i]k ∈ R
2 denotes the first and second elements of

ζ[i]k ∈ R
3. In this notation, for Σ in (8), the system matrices

of the whole power network is given by (25), where ⊗ and
0n×m ∈ R

n×m denote the Kronecker product and the zero
matrix, respectively.

Finally, we consider giving additional input ports used by
a hierarchical distributed controller. Supposing that several

(1)

(2) (5)

(3) (4)

: Generator : Load

Fig. 1. Interconnection structure among generators and loads.

generators have the ports for controllers in the lth layer, we
give B(l) in (8) as a matrix composed of a part of columns of
dg(Bi)i∈N . Similarly to this, we give the additional output
y(l) in (22) for observers in the lth layer as a part of y in
(29).

B. Hierarchical Distributed Control of Power Networks

In what follows, we implement the hierarchical distributed
control to a power network composed of five subsystems.
The interconnection structure among generators and loads is
shown in Fig. 1, where generators and loads are denoted by
circles and diamonds, respectively. The blue and red circles
represent the generators having additional input ports and
sensors to be used for a hierarchical distributed controller
and observer.

In this power network model, 20 generators and 24 loads
are interconnected. Thus, the interconnected system is 108-
dimensional, i.e., n = 108. For generators and loads, the
parameters MG

[i]k, DG
[i]k, TG

[i]k, ML
[i]k and DL

[i]k are randomly
chosen from {10, 90}, {0.1, 0.4}, {3.0, 10}, {5, 10, 30} and
{0.1, 0.3, 0.5}, respectively. Furthermore, the elements of Y
in (28) compatible with subsystem interconnection are given
as 1, and those compatible with interconnection inside the
subsystems are randomly chosen from [0.1, 1.0]. In what
follows, we consider a situation where the frequency of the
power system suddenly varies. To simulate this, we give
nonzero initial values for the angular velocity of generators,
i.e., δ̇G[i]k(0) �= 0.

First, we design a set of locally stabilizing controllers
{κi}i∈N in (9) by the LQR design techniques. By changing
the weighting parameters for the LQR design, we obtain
three sets of locally stabilizing controllers. The resultant
values of ‖θ‖ in (18) are 1388, 423 and 126, respectively. To
see the behavior of the closed-loop system, we show its initial
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Fig. 2. Initial value responses of power network model.

value responses in the upper half of Fig. 2 (a)-(c), where the
angular velocities of all generators and loads are shown. In
this figure, the trajectories of disjoint subsystems, i.e., the
system without subsystem interconnection, are shown by the
dashed lines, and those of subsystems with interconnection
are shown by the solid lines. From this result, we see that,
even though the convergence rate of the system without
subsystem interconnection becomes higher as improving
the L2-performance of local controllers, the instability of
the closed-loop system is induced by negative interference
among subsystems.

Next, using a hierarchical distributed controller and ob-
server, we aim at improving the L2-performance of the whole
closed-loop system. Let L = 2, and we give a family of
cluster sets as C(0)

1 = {1, 2}, C(0)
2 = {3, 4, 5}, C(1)

1 = {1, 2}
where each of C(0)

1 and C(0)
2 includes 10 generators and

12 loads. Furthermore, in Fig. 1, we represent generators
having additional input ports used for controllers in the first
and second layers by the blue and red circles, respectively.
In addition, by letting L̂ = 1 in (22), which means that
the interaction among the five subsystems is estimated by
an observer, we attach additional sensors for a hierarchical
distributed observer on the generators represented by thick
black circles in Fig. 1.

We design each controller Φ(l) by minimizing γ(l) in
(17). In addition, inspecting the structure of hierarchical
distributed observers in (23), we design the observer gain
H

(l)
i by minimizing the H∞-norm of the transfer matrix

compatible with the pair (dg(A
(l)
i −H

(l)
i C

(l)
i ),Γ(l)). Then,

we implement the hierarchical distributed controller and
observer. In the lower half of Fig. 2 (a)-(c), we show the
initial value responses of the hierarchical distributed control
system. For each case of (a)-(c), the resultant value of ‖x‖L2

is 1189, 491 and 234, respectively. From this result, we see
that the L2-performance of the closed-loop system improves
as improving the performance of local controllers, owing to
the attenuation of interference among subsystems.

V. CONCLUSION

In this paper, we have proposed a design method of hier-
archical distributed controllers for networked linear systems.
For systematic design, we use state-space expansion that
enables us to construct a hierarchically structured controller
that attenuates negative interference among hierarchically
clustered subsystems as well as among locally stabilizing
controllers. Furthermore, by the integration of a hierarchical
distributed observer, we have built a framework to implement
an observer-based hierarchical distributed control. Finally,
the efficiency of the proposed method has been shown
through an illustrative example of power networks.
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