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Abstract— In this paper, we construct a nonlinear reduced
order model of a plasticization cylinder of injection machines,
which has a spatially distributed nonlinear dynamics. First, a
distributed parameter model for the overall control system is
derived based on the physical laws. Next, we attempt to reduce
the model complexity focusing on the specific structure of the
nonlinearity which arises from temperature-dependency of the
rate of heat loss of heaters subjected to natural convection.
This enables us to obtain a 28-dimensional model (via an
808-dimensional spatially discretized model) while theoretically
guaranteeing a practically satisfactory accuracy. The obtained
model is examined experimentally by using a prototype system.

I. INTRODUCTION

Plastic injection molding is a suitable processing method
for mass production. Recently, injection molding machines
become increasingly important. For example, along with
development of a new material such as engineering plastic,
lots of metal components such as automotive components
are replaced by plastic components for weight reduction.
Furthermore, components of IT devices, e.g., chassis, con-
nectors and optical elements are produced by plastic injection
molding. In the process of such production, the temperature
at plasticization process strongly affects quality of the pro-
duction. Fig. 1 shows schematic depiction of a plasticization
cylinder in charge of the plasticization process. In this
process, resin is melted by heat exchange with the internal
surface of a barrel heated by bandheaters. Toward quality
management and improvement, it is essentially important to
simulate and control the plasticization process. To this end,
modeling temperature dynamics of the internal surface of
the barrel has tremendous potential. Thus, the present paper
constructs the dynamical model of a prototype system shown
in Fig. 2 based on a theoretic and experimental viewpoint. In
particular, since distribution of temperature of the barrel and
resin is non-uniform, it is required to carefully model thermal
convection and heat exchange with heaters, a water-cooling
cylinder and outer air.

In the first half of this paper, we model an overall plas-
ticization cylinder including thermal properties of heaters,
radiation to a water-cooling cylinder and outer air. In the
previous research [1], the proposed model lacks the accuracy
for the purpose above. In particular, it is ignored that the
rate of heat loss to the air depends on temperature of
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Fig. 1. Schematic depiction of plasticization cylinder.

heaters [2]. First, we show that the temperature-dependency
is not negligible by experiment. Subsequently, we provide
a new nonlinear plasticization cylinder model explicitly
taking into account the effect. Finally, the obtained model
is validated by experiment.

The obtained model (PDEs or discretized model) is forced
to a high dimensional system in general. Thus, it makes
difficult to design model-based controllers and observers.
Therefore, in the remainder of this paper, we aim to reduce
the order of the nonlinear model. However, model order
reduction of nonlinear systems is difficult in a general way.
Thus, in this paper, we utilize the structure of the nonlinear
model arising from radiation to the air. In addition, based
on the result in [3], we guarantee not only the stability of
the reduced nonlinear system, but also provide a theoretical
approximation error bound. As a result, the order is further
reduced from 808 to 28 keeping practically satisfactory
accuracy.

The organization of this paper is as follows. The plasti-
cization cylinder is modeled in Section II. The first part in
Section III is devoted to explaining the configulation of a
prototype system shown in Fig. 2 for experiment. In the last
part, the obtained model in Section II is validated experimen-
tally. In Section IV-A, we give a theoretical error analysis
for the reduced order nonlinear model with a provision of
systematic reduction procedure. In Section IV-B, we show a
simulation result of the model reduction. Finally, Section V
concludes the paper. Proof of the main theorem is described
in Appendix.

II. NONLINEAR MODELING OF PLASTICIZATION
CYLINDERS

In Fig. 3, we show the schematic depiction of a two-
dimensinal plasticization model consisting of a barrel, outer
air, inner fluid, heaters and a water-cooling cylinder. The
inner fluid represents melted resin inside the barrel in real
injection machines. The water-cooling cylinder has internally
a pipe line over the barrel, which cools the barrel by flowing
water from IN to OUT shown in Fig. 2. The details of
the barrel, the outer air, the water-cooling cylinder and the
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Fig. 3. Schematic of a plasticization cylinder model

inner fluid are described in Section II-A. In addition, the
detail model of heaters with the nonnegligible nonlinearity
described in Section I are presented in Section II-B. In
Section II-C, the overall PDEs are discretized and finally
we provide an error system around an equilibrium state.

A. Barrel, Outer air, Inner fluid and Water-cooling cylinder
model

In this subsection, we model a barrel, outer air, inner fluid
and a water-cooling cylinder. Hereafter, the time variable is
t, spatial variables along the longer and radial direction are
x and r such as

(x, r) ∈ D := [0, X]× [Rf , R]

with the origin shown in Fig. 3, where X [m] is the length
of the barrel, Rf and R [m] are internal radius and external
radius of the barrel, respectively. In what follows, state
variables are

• Temperature of barrel [deg]: T (t, x, r)
• Temperature of inner fluid [deg]: T̃ (t, x)
• Temperature of the kth heater [deg]: Hk(t), k =

1, . . . , N

where N denotes the number of heaters. Note that we here
assumed that T̃ (resp. Hk) does not depend on r (resp.
x, r). In addition, in view of a preliminary experiment, the
temperatures of outer air and a water-cooling cylinder are
regarded constant and denoted as To [deg] and Tc [deg],
respectively.

First, heat transfer property of a barrel is described by a
cylindrical coordinate diffusion equation1 as

∂T

∂t
= α

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂x2

)
, (x, r) ∈ int(D), (1)

1∂D is the border of D, int(D) is the inside of D, n denotes a normal
unit vector to ∂D.

where α [m2/s] denotes a diffusion coefficient. Heat budget
on the surface of the barrel is given as Neumann type
boundary conditions:

−β ∂T
∂n

= h•(T• − T ), (x, r) ∈ S•, • = {o, c} (2)

where β [W/(mK)] denotes the coefficient of thermal conduc-
tivity, h• [W/(m2K)] denotes the coefficient of heat transfer,
So,Sc ⊂ ∂D are sets of contacts to the outer air and the
water-cooling cylinder, respectively. In addition, a boundary
condition on the interface of inner fluid over r = Rf is given
by

−β ∂T
∂r

= hf(T̃ − T ), r = Rf , x ∈ (0, X), (3)

where hf [W/(m2K)] denotes the coefficient of heat transfer.
Similalry, heat budget to the kth heater is

−β ∂T
∂r

= hk(Hk − T ), r = R, x ∈ Xk (4)

where Xk ⊂ [0, X] denotes the set of contacts to the kth
heater over r = R and hk [W/(m2K)] denotes the coefficient
of heat transfer at contact points. Second, we assume that the
inner fluid remains stationary. Thus, its heat transfer property
is given by

∂T̃

∂t
= α̃

∂2T̃

∂x2
+ hf(T (x,Rf)− T̃ ), x ∈ (0, X) (5)

where α̃ [m2/s] denotes the coefficient of thermal conduc-
tivity of the inner fluid, the second term in the right-hand
side in (5) represents the total thermal flow from the barrel
to the inner fluid. Similarly, heat exchange at both ends of
the outer air is given by

−βf ∂T̃
∂x

= ho(To − T̃ ), x = 0, X. (6)

where βf [W/(mK)] denotes the coefficient of thermal con-
ductivity of the inner fluid. Finally, for output equations,
Yd ∈ R

N [deg] and Y ∈ R
l [deg] denote temperatures

measured by N sensors shown in Fig. 3 (called controlling
thermo couples) and by other sensors (for measurement). The
each element is given by appropriately spatially-weighted
integration of T .

B. Model of heaters

As preliminary analysis, we consider a heat transfer h̄k
between the kth heater and outer air. In general, coefficients
of heat transfer are not static. It is well-known that the rate
of heat loss to the air depends on the temperature differences
between a heater and the air under natural convection [2]. To-
ward the quality management of products, this temperature-
dependency is not negligible and incorporated explicitly as
follows:

Assumption 1: For each k ∈ {1, . . . , N}, the heat transfer
coefficient between the kth heater and outer air is given by

h̄k(Hk − To). (7)

where h̄k : R �→ R+ is non-decreasing in R0+ and non-
increasing in R0−.



Hence, the model of the kth heater is

Ḣk =
1

ck

(
Vk(t)

2

rk
− h̄k(Hk − To) · ak(Hk − To)

−2πR

∫
Xk

hk(Hk − T (x,R))dx

)
, ∀k = {1, . . . , N} (8)

where ck [J/K] denotes the heat capacity, rk [ohm] denotes
the impedance, ak [m2] denotes the outer area of the heater,
2πR|Xk| [m2] denotes the inner area of the heater and
Vk(t) [V] denotes the input voltage. In the right side of
(8), the second and third term represent the total thermal
flow rate to outer air and the barrel, respectively. Note that
the other coefficients of heat transfer ho, hc, hf and hk are
constant because the corresponding temperatures are low or
the corresponding area is small.

C. Spatial discretization

We discretize (1)-(6) with steps Δx and Δr for x and r
axes by means of standard finite element method [4]. Com-
bining this with (7) and (8) yields the following nonlinear
system ⎧⎪⎪⎨

⎪⎪⎩

˙̄x = Ax̄+Bv v̄ + b̄1
ȳd = Cdx̄
ȳ = Cyx̄
w̄ = Cwx̄+Dwū

(9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̄z =

⎡
⎢⎣

− 1
c1
z̄1ψ1(z̄1)

...
− 1

cN
z̄NψN (z̄N )

⎤
⎥⎦+ b̄2 + w̄

v̄ = z̄ + To1N

(10)

ψk(z̄k) := akh̄k(z̄k) + 2πR|Xk|hk. (11)

Eq. (9) is a dynamics of the barrel and the inner fluid while
(10) and (11) are dynamics of the heaters. The physical
meanings of variables are as follows: x̄ ∈ R

n denotes a
vector of spatial discretized temperature T and T̃ , ȳd ∈ R

N

denotes partial temperatures of T measured by sensors,
ȳ ∈ R

l denotes partial temperatures of T for evaluation,
z̄ := [H1−To, . . . , HN−To]T ∈ R

N , v̄ := [H1, . . . , HN ]T ∈
R

N and 1N := [1, . . . , 1]T ∈ R
N . Furthermore, w̄ ∈ R

N

denotes a heat quantity to heaters, ū ∈ R
N denotes the

applied voltage, i.e., V 2
k . Finally, the first and second term of

ψk represent radiation to the air and the barrel, respectively.
Thus, ψk represents the coefficient of whole radiation of the
kth heater.

Here, we describe the configulation of controller of injec-
tion molding machines. Input to each heater is dispersively
determined by the corresponding measured temperature yd
(in details, refer to the following section). Thus, the target
of controller is given by a desired output y∗d of yd, where y∗d
depends on molding products. In general, nonlinear systems
do not necessarily have a unique desired state corresponding
to a desired output. However, the following proposition
guarantees this unique existence for our case.

Proposition 1: Consider a nonlinear system (9)-(11). If[
A Bv

Cd 0

]
is non-singular, then, for any y∗d ∈ R

N

there exist unique equilibrium states and inputs x̄∗, v̄∗, ū∗

satisfying ȳd(t) ≡ y∗d.

Proof: The first and second equations in (9) yields that[ −b̄1
y∗d

]
=

[
A Bv

Cd 0

] [
x̄∗

v̄∗

]
. (12)

Thus, there only exist x̄∗ and v̄∗ satisfying (12). Furthermore,
we define z∗ := v̄∗ − To1N , then ū∗ is given by

ū∗ = −D−1
w

⎛
⎜⎝
⎡
⎢⎣

−z∗1ψk(z
∗
1)

...
−z∗Nψk(z

∗
N )

⎤
⎥⎦+ b̄2 + Cwx̄

∗

⎞
⎟⎠ .

Note that Dw := diag{ 1
c1r1

, . . . , 1
cNrN

} is non-singular.

In the remainder of this section, we rewrite (9)-(11) as
an error system from the desired value. Define errors with
respect to each variable, e.g., z := z̄ − z∗, y := ȳ − Cyx̄

∗.
From simple calculation,

z̄ =

⎡
⎢⎣

−(z1 + z∗1)ψk(z1 + z∗1)
...

−(zN + z∗N )ψk(zN + z∗N )

⎤
⎥⎦+ Cwx

+Dwu+ b̄2 + Cwx̄
∗ +Dwū

∗

holds. Thus, we have a nonlinear system⎧⎪⎪⎨
⎪⎪⎩

ẋ = Ax+Bvz
yd = Cdx
y = Cyx
w = Cwx+Dwu

(13)

Σnl : ż = Ψ̃(z) + w, v = z (14)

where

Ψ̃(z) :=
[
ψ̃k(z1), . . . , ψ̃k(zN )

]T
∈ R

N , Ψ̃(0) = 0 (15)

ψ̃k(zk) := − ((zk + z∗k)ψk(zk + z∗k)− z∗kψk(z
∗
k)) (16)

and zk denotes the kth element of z for any k ∈ {1, . . . , N}.

III. EXPERIMENTAL RESULTS

In this section, we experimentally validate the nonlinear
model derived in the previous section.

A. Schematic of prototype system

Configulations of the prototype system shown in Fig. 2
are as follows: The test object consists of a barrel, N = 4
heaters and one water-cooling cylinder. The cylindrical barrel
has several thermo couples on its interior wall also implanted
several thermo couples (controlling thermo couples) are
inside the barrel. Input to each heater is dispersively deter-
mined by temperatures measured by the implanted sensors.
Note that the number of implanted thermo couples is 4.
In addition, sequential data of experiment are sampled by
an ocilloscope and a data logger during 30 [min] where
sampling interval is short enough.

The nonlinear function of heat transfer h̄k(z̄k) in (7) is
determined as follows: First, several actual coefficients are
identified by experiment. In Fig. 4, we show the resultant
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Fig. 4. Coefficients of heat transfer h̄k .
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coefficients with respect to the first heater as circles. Second,
the function h̄1(z̄1) is approximately determined by a least
square method in R0+ and let h̄1(−z̄1) = h̄1(z̄1). Since sim-
ilar experimental results are obtained for the other heaters,
we take h̄k = h̄1 for k ∈ {2, . . . , N}. The other parameters,
e.g., α in (1), ho and hc in (2), are referred to [2]. Taking
Δx = Δr = 5 [mm], we have an 808-dimensional nonlinear
model.

B. Model validation

First, we validate steady-state characteristics of the model.
Steady temperature distribution inside the barrel obtained by
the experiment and simulation are shown in Fig. 5 where
the vertical axis indicates temperatures and the horizontal
axis indicates positions inside the barrel in Fig. 3. In Fig. 5,
we plot experimental results by the circles for the desired
temperatures 200 [deg] and 100 [deg], respectively where
the two results are plotted in each case. Moreover, the
solid lines are simulation results of x̄∗ in Proposition 1.
This figure shows that the derived model accurately explains
experimental results.

Second, we show transient responses obtained by the
experiment and simulation as the blue and red lines in
Fig. 6. In addition, the solid and dotted lines are for different
controlling configurations. Measurement points are shown in
Fig. 7 as Z1 and P1-P9. These figures show that the derived
model accurately explains experimental results. Therefore,
we conclude that an accurate nonlinear model is obtained.

IV. MODEL ORDER REDUCTION

In the preceding section, we showed the validity of the
obtained nonlinear model. However, since the dimension of
the model is 808, it is not useful for designing controllers

and observers. On the other hand, the model obtained by
coarser spatial discretization cannot simulate behaviors of
the real system. In fact, a 409-dimensional model with the
spatial discretization width Δx = 10 [mm] does not simulate
accurately. Thus, in this section, we reduce the dimension of
the whole nonlinear system while preserving input-output
performances. Since model reduction of general nonlinear
systems is challenging, we utilize a specific structure as
the low-dimensional nonlinear system is feedback inter-
connected to the high-dimensional linear system. We, then,
reduce the linear system part only in order to derive a low-
dimensional system. The linear system is defined as

Σlin :

⎧⎨
⎩

ẋ = Ax+Bvv
y = Cyx
w = Cwx+Dwu

(17)

where y denotes an evaluating output in (13) and the overall
nonlinear system Σ := (Σlin,Σnl) is shown in Fig. 8.

Furthermore, let a reduced linear system be Σ̂lin and
an inter-connected reduced nonlinear model be Σ̂ :=
(Σ̂lin,Σnl).

A. Error analysis

For the following discussion, we assume that matrix A in
(17) is Hurwitz. This is the case for our model, since Σlin

is a diffusive system. Thus, a reduced nonlinear model must
keep stability with a small approximation error.

As preliminary of main results, we introduce some nota-
tions as follows: γij is H∞-norm of Gij , that is a transfer
function from i ∈ {y, w} to j ∈ {u, v} of Σlin. Similary, γ̂ij
is H∞-norm of Ĝij , that is a transfer function from i to j
when Σ̂lin is stable. H∞-norm of an error system Gij− Ĝij

is εij . In addition, we assume that Σ̂lin is minimal realization
without loss of generality.

Theorem 1: Consider Σnl in (14) and Σlin in (17). Define

μ := max
k=1,...,N

(μk) (18)

μk :=
ck
νk

(19)

νk := min
z∈RN

ψk(z)(= ψk(0)). (20)

Let Σ̂lin be a stable linear system satisfing

γ̂wvμ < 1 (21)

then the overall reduced order system Σ̂ = (Σ̂lin,Σnl) is
asymptotically stable. Moreover, upper bound of output error
such as ‖y− ŷ‖L2

≤ ε‖u‖L2
for any square-integrable input

u is given by

ε =
εyvμγwu

1− γwvμ
+

γ̂yvμ

1− γ̂wvμ

εwvμγwu

1− γwvμ
. (22)

Proof: See Appendix.

The parameter μ in (18) and μk in (19) act as an incremental
gain of nonlinear systems, the details are described in the
proof. The parameter μk is characterized by the lower value
of the coefficient of radiation ψk. Since ψk dominates the
decay rate of energy of heaters, it implies that (22) evaluates
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Fig. 6. Transient responses at several measurement points shown in Fig. 7.
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Fig. 8. Overall nonlinear system.

an approximation error with the minimum decay rate. It is
reasonable that the error ε becomes larger as ψk gets smaller.

The reduction procedure using this theorem is as follows:
Note that εij ≤ ‖G−Ĝ‖∞ holds where G and Ĝ are transfer
functions of Σlin and Σ̂lin, respectively. In addition, we
define δ satisfying εij ≤ δ, then γ̂ij ≤ γij + δ holds.

1) For given Σlin and Σnl, compute γij and μ in (18).
2) Find maximum δ > 0 such that the error bound ε in

(22) is less than a desired value and (21) holds. Note
that we can replace εij and γ̂ij by δ and γij + δ as a
priori bounds.

3) Find a reduced order model Σ̂lin satisfying ‖G −
Ĝ‖∞ ≤ δ by means of a model reduction method with
preserving stability, e.g., balanced truncation [5], [6].

4) Obtain Σ̂ by inter-connecting Σ̂lin and Σnl as shown in
Fig. 8.

B. Simulation results

In this subsection, we demonstrate the efficiency of the
model reduction method described in the previous subsec-
tion. For given Σlin and Σnl, we have μ = 30.0, γwu =
1.3 × 10−4, γyv = 1.7 and γwv = 3.2 × 10−2. In the
second step of the procedure, we have δ = 3 × 10−4 such
that ε < 1.5 × 10−1. Reducing Σlin by means of balanced
truncation, finally, we have a further reduced 28-dimensional
nonlinear model compared to the 808-dimensional original
model. Since the obtained model satisfies (21) with μγ̂wv =
0.96, the model is stable. This model is the smallest one
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Fig. 9. Comparison of original model with reduced order model.

satisfying the condition in (21). Moreover, the error bound
results in ε = 2.7 × 10−2. Taking into account the fact that
y(t) and u(t) are O(103) and O(102), we conclude that the
model which approximates the original model accurately.

Similarly to Section III, we show a transient response
of the reduced model and the original model shown in
Fig. 9, where the input signal is the same as used in
model validation. The blue and red lines depict outputs
corresponding to the temperature at Z1 of the original and
reduced order model. This figure shows that we obtained the
accurate reduced order model for the spatially distributed
nonlinear dynamics.

V. CONCLUSION

In the first half of this paper, we provided a new non-
linear model for plasticization systems including nonlinear
radiation to outer air. Furthermore, constructing a prototype
system, we showed the accuracy of the model by experiment.
In the latter half, we reduced the order of the nonlinear
model with theoretical guarantee about the approximation
error. The accuracy of the obtained model was evaluated by
comparison with simulation results. Therefore, we concluded
that the reduced nonlinear model accurately explains the
experimental results.

APPENDIX

Definition 1: Consider a nonlinear system

ẋ = f(x, u), y = g(x, u) (23)

where x ∈ R
n, u ∈ R

m, y ∈ R
l. Suppose that f(0, 0) =

0, g(0, 0) = 0 and x = 0 are stable equilibrims. If there



exists a bounded function β(p, s) : Rn × R
n �→ R such that

β(p, s) ≥ 0, β(0, 0) = 0 and

‖y2 − y1‖22,T ≤ μ2‖u2 − u1‖22,T + β(x1,0, x2,0) (24)

for u1, u2 ∈ Lm
2,T , ∀T ≥ 0, then the nonlinear system (23)

has a L2-bounded incremental gain μ.
Similarly, an incremental gain for linear system is defined,
which results in H∞-norm.

Lemma 1: Consider the augmented system of a nonlinear
system (23) as

Σaux :

{
ẋ1 = f(x1, u1), y1 = g(x1, u1)
ẋ2 = f(x2, u2), y2 = g(x2, u2)

. (25)

The fact that a nonlinear system (23) has incremental gain
μ is equivalent to that Σaux is dissipative with a supply rate

s(y1, u1, y2, u2) = μ2|u2 − u1|2 − |y2 − y1|2. (26)

Proof: See [7].

Lemma 2: Define νk > 0 in (20). If assumption 1 holds
and zk,1 ≥ zk,2 is satisfied for all zk,1, zk,2 ∈ R, then

zk,1ψk(zk,1)− zk,2ψk(zk,2) ≥ νk (zk,1 − zk,2) (27)

holds.
Proof: It is obviously proven in the case of ψk(zk,1) =

νk. In what follows, we consider the case of ψk(zk,1) �= νk.
Then, zk,1(ψk(zk,1)−νk) ≥ zk,2(ψk(zk,2)−νk) is equivalent
to

zk,1 ≥ ψk(zk,2)− νk
ψk(zk,1)− νk

zk,2.

Assumption 1 yields that ψk(zk,1) ≥ ψk(zk,2) holds when
zk,1 ≥ zk,2 ≥ 0. Thus, (27) follows. Similarly to this, we
have (27) when 0 > zk,1 ≥ zk,2. It is obviously proven in
the case of zk,1 ≥ 0 ≥ zk,2. Hence, the claim is proven.

Proposition 2: Consider a given Σlin in (17). Let Σlin be
stable and Σ̂lin be a stable reduced linear system. In addition,
suppose that a given Σnl in (14) is zero-state detectable while
Σ̂lin and Σnl have incremental gain γ̂ij and μ. If

γwvμ < 1 (28)

holds, then Σ = (Σ̂lin,Σnl) has an incremental gain and is
aymptotically stable with zero input. Furthermore, an output
error bound ε such as ||y − ŷ||L2

≤ ε||u||L2
is given by

ε = εyu+
εyvμγwu

1− γwvμ
+

γ̂yvμ

1− γ̂wvμ

(
εwu +

εwvμγwu

1− γwvμ

)
(29)

Proof: See [3].

Proof of theorem 1 : First, we show that a nonlinear
scalar system żk,1 = ψ̃k(zk,1) + wk,1, vk,1 = zk,1 has
an incremental gain μk. To this end, we define a nonlinear
system

Σ
(k)
nl : żk =

[
ψ̃k(zk,1)

ψ̃k(zk,2)

]
+ wk, vk = zk

where zk := [zk,1, zk,2]
T and wk := [wk,1, wk,2]

T. From
Lemma 1, we show that Σ

(k)
nl has a storage function

Sk(zk) := μk(zk,1 − zk,2)
2 with a supply rate sk(·) =

μ2
k|wk,2−wk,1|2−|vk,2−vk,1|2 , namely, it suffices to show

that

Ṡk(zk) ≤ μ2
k|wk,2 − wk,1|2 − |vk,2 − vk,1|2. (30)

Lemma 2 for zk,1 ≥ zk,2 yields that

Ṡk(zk) = 2μk(zk,1 − zk,2)

(
− 1

ck
((zk,1 + z∗k)

ψk(zk,1 + z∗k)− z∗kψk(z
∗
k)− (zk,2 + z∗k)

ψk(zk,2 + z∗k) + z∗kψk(z
∗
k)) + wk,1 − wk,2)

≤ − 2

ck
μk(zk,1 − zk,2)

2νk + 2μk(zk,1 − zk,2)(wk,1 − wk,2)

holds. Similarly to the case of zk,1 < zk,2, we see that the
sufficient condition for (30) is

−2μkνk
ck

p2 + 2μkpq − μ2
kq

2 + p2 ≤ 0 (31)

for any p, q ∈ R. Eq. (31) is equivalently written as(
1− 2μkνk

ck

)(
p+

μkck
ck − 2μkνk

q

)2

− μ2
k

(
1 +

ck
ck − 2μkνk

)
q2 ≤ 0.

(32)
On the other hand, it follows from (19) that

ck − 2μkνk ≤ 0, 1 +
ck

ck − 2μkνk
≥ 0.

Thus, (31) follows. Therefore, the nonlinear scalar system
żk,1 = ψ̃k(zk,1) + wk,1, vk,1 = zk,1 has the incremental
gain μk. Second, we show that Σnl has the incremental gain
μ := maxk(μk). Define

S(z1, . . . , zN ) :=
N∑

k=1

Sk(zk). (33)

Then, (30) yields that S(·) satisfies

Ṡ(z1, . . . , zN ) ≤ μ2|w:,2 − w:,1|2 − |v:,2 − v:,1|2
where w:,1 := [w1,1, . . . , wN,1]

T. Thus Σnl has the incre-
mental gain μ := maxk(μk). Finally, we show the stability
of Σ̂ and the error bound. Eq. (14) implies that Σnl is zero-
state detectable. Thus, Proposition 2 shows that the overall
nonlinear system Σ̂ is asymptotically stable with zero input.
Furthermore, since εyu = εwu = 0 holds, the error bound is
given by (22).
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